File size: 8,234 Bytes
d7955f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a492a3
d7955f6
 
 
 
 
 
 
 
 
1a492a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7955f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a492a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7955f6
 
 
 
 
 
 
1a492a3
 
 
 
 
 
 
 
 
 
d7955f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a492a3
 
d7955f6
 
 
 
 
 
 
 
 
1a492a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7955f6
 
1a492a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7955f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a492a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# app.py

import os
import re
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
import pdfplumber
from chromadb import Client
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from transformers import AutoTokenizer
from rerankers import Reranker
from transformers import GPT2TokenizerFast
from groq import Groq
from chromadb import PersistentClient
import gradio as gr

# Retrieve the API key from environment variables (Hugging Face Secrets)
groq_api_key = os.environ.get('GROQ_API_KEY')

# Initialize the chat client with the API key
chat_client = Groq(api_key=groq_api_key)
model = "llama-3.2-90b-text-preview"


def parse_pdf(pdf_path):

    texts = []
    with pdfplumber.open(pdf_path) as pdf:
        for page_num, page in enumerate(pdf.pages, start=1):
            text = page.extract_text()
            if text:
                texts.append({
                    'text': text,
                    'metadata': {
                        'page_number': page_num
                    }
                })
    return texts

def preprocess_text(text):
    # ... (same as your original function)
    text = re.sub(r'\s+', ' ', text)
    text = text.strip()
    return text

def call_Llama_api(query, context):
    # ... (same as your original function)
    chat_completion = chat_client.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": "You are a car technician. Given the user's question and relevant excerpts from different car manuals, answer the question by including direct quotes from the correct car manual. Be concise and to the point in your response."
            },
            {
                "role": "user",
                "content": "User Question: " + query + "\n\nRelevant Excerpt(s):\n\n" + context,
            }
        ],
        temperature=0.7,
        max_tokens=50,
        top_p=1,
        stream=False,
        stop=None,
        model=model
    )
    response = chat_completion.choices[0].message.content
    return response


def chunk_texts(texts, max_tokens=500, overlap_tokens=50):
    """
    Splits texts into chunks based on paragraphs with overlap to preserve context.

    """
    chunks = []
    for item in texts:
        text = preprocess_text(item['text'])
        if not text:
            continue
        metadata = item['metadata']
        # Split text into paragraphs
        paragraphs = text.split('\n\n')
        current_chunk = ''
        current_tokens = 0
        for i, paragraph in enumerate(paragraphs):
            paragraph = paragraph.strip()
            if not paragraph:
                continue
            paragraph_tokens = len(tokenizer.encode(paragraph))
            if current_tokens + paragraph_tokens <= max_tokens:
                current_chunk += paragraph + '\n\n'
                current_tokens += paragraph_tokens
            else:
                # Save the current chunk
                chunk = {
                    'text': current_chunk.strip(),
                    'metadata': metadata
                }
                chunks.append(chunk)
                # Start a new chunk with overlap
                overlap_text = ' '.join(current_chunk.split()[-overlap_tokens:])
                current_chunk = overlap_text + ' ' + paragraph + '\n\n'
                current_tokens = len(tokenizer.encode(current_chunk))
        if current_chunk:
            chunk = {
                'text': current_chunk.strip(),
                'metadata': metadata
            }
            chunks.append(chunk)
    return chunks

def is_car_model_available(query, available_models):
    # ... (same as your original function)
    for model in available_models:
        if model.lower() in query.lower():
            return model
    return None

def extract_car_model(pdf_filename):

    base_name = os.path.basename(pdf_filename)
    match = re.search(r'manual_(.+)\.pdf', base_name)
    if match:
        model_name = match.group(1).replace('_', ' ').title()
        return model_name
    else:
        return 'Unknown Model'

def colbert_rerank(query=None, chunks=None):
    # ... (same as your original function)
    d = ranker.rank(query=query, docs=chunks)
    reranked_chunks = [d[i].text for i in range(len(chunks))]
    return reranked_chunks[:10]

def process_query(query):
    # Use global variables
    global available_car_models, collection

    car_model = is_car_model_available(query, available_car_models)
    if not car_model:
        return "The manual for the specified car model is not present."

    # Initial retrieval from ChromaDB
    results = collection.query(
        query_texts=[query],
        n_results=50,
        where={"car_model": car_model},
        include=['documents', 'metadatas']
    )

    if not results['documents']:
        return "No relevant information found in the manual."

    # Extract chunks and metadata
    chunks = results['documents'][0]
    metadatas = results['metadatas'][0]

    reranked_chunks = colbert_rerank(query, chunks)
    final_context = " ".join(reranked_chunks[:10])

    answer = call_Llama_api(query, final_context)

    # Prepare citations
    citations = [
        f"Page {meta.get('page_number', 'N/A')}" for meta in metadatas[:5]
    ]

    citations_text = "Citations:\n" + "\n".join(citations)

    return f"{answer}\n\n{citations_text}"

# Initialize global variables
def initialize():
    global collection, available_car_models, ranker

    # Check for CUDA availability
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"Using device: {device}")

    tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")  # For token counting

    # Initialize embedding model
    embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
        model_name="all-MiniLM-L12-v2", device=device
    )

    client = PersistentClient(path="./chromadb")

    # Get the collection
    collection_name = "car_manuals5"

    if collection_name in [col.name for col in client.list_collections()]:
        collection = client.get_collection(
            name=collection_name,
            embedding_function=embedding_function
        )
        available_car_models = ['Tiago', 'Astor']
        
    else:
        collection = client.create_collection(
            name=collection_name,
            embedding_function=embedding_function
        )


    # collection = client.get_or_create_collection(
    #     name=collection_name,
    #     embedding_function=embedding_function
    # )

    # Set available car models
    # available_car_models = ['TIAGO', 'Astor']

        pdf_files = ['./car_manuals/manual_Tiago.pdf', './car_manuals/manual_Astor.pdf']
        available_car_models = []

        for pdf_file in pdf_files:
            print(f"Parsing {pdf_file}...")
            pdf_texts = parse_pdf(pdf_file)
            car_model = extract_car_model(pdf_file)
            available_car_models.append(car_model)
            # Add car model to metadata
            for item in pdf_texts:
                item['metadata']['car_model'] = car_model
            # Chunk texts using the refined strategy
            chunks = chunk_texts(pdf_texts, max_tokens=500, overlap_tokens=50)
            # Prepare data for ChromaDB
            documents = [chunk['text'] for chunk in chunks]
            metadatas = [chunk['metadata'] for chunk in chunks]
            ids = [f"{car_model}_{i}" for i in range(len(documents))]
            # Add to ChromaDB collection
            collection.add(
                documents=documents,
                metadatas=metadatas,
                ids=ids
            )



    # Initialize the ranker
    ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
# Call initialize function
initialize()

# Set up the Gradio interface
iface = gr.Interface(
    fn=process_query,
    inputs=gr.inputs.Textbox(lines=2, placeholder='Enter your question here...'),
    outputs='text',
    title='Car Manual Assistant',
    description='Ask a question about your car manual.',
)

if __name__ == "__main__":
    # iface.launch(server_name="0.0.0.0", server_port=7860)
    iface.launch()