import torch from transformers.modeling_outputs import BaseModelOutput import torch.nn as nn class ImageCaptionGenerationWithAttention(nn.Module): def __init__(self, vit_model, bart_model, tokenizer): super().__init__() self.tokenizer = tokenizer self.vit = vit_model self.bart = bart_model self.visual_projection = nn.Linear( vit_model.config.hidden_size, bart_model.config.d_model) def forward(self, pixel_values, input_ids=None, attention_mask=None, labels=None): vit_outputs = self.vit(pixel_values) if isinstance(vit_outputs, tuple): last_hidden_state = vit_outputs[0] else: last_hidden_state = vit_outputs.last_hidden_state visual_features = self.visual_projection(last_hidden_state) if input_ids is not None: decoder_outputs = self.bart( labels=input_ids, encoder_outputs=BaseModelOutput( last_hidden_state=visual_features), return_dict=True ) return decoder_outputs else: return visual_features def generate(self, pixel_values, max_length=50, num_beams=5, early_stopping=True): self.eval() with torch.no_grad(): vit_outputs = self.vit(pixel_values) if isinstance(vit_outputs, tuple): last_hidden_state = vit_outputs[0] else: last_hidden_state = vit_outputs.last_hidden_state visual_features = self.visual_projection(last_hidden_state) generated_ids = self.bart.generate( encoder_outputs=BaseModelOutput( last_hidden_state=visual_features), max_length=max_length, num_beams=num_beams, early_stopping=early_stopping, decoder_start_token_id=self.tokenizer.bos_token_id, eos_token_id=self.tokenizer.eos_token_id, return_dict_in_generate=False ) return generated_ids