ViT-BART-Based-Image-Captioning / model_architecture.py
ashish-001's picture
Upload 6 files
dc6ad72 verified
import torch
from transformers.modeling_outputs import BaseModelOutput
import torch.nn as nn
class ImageCaptionGenerationWithAttention(nn.Module):
def __init__(self, vit_model, bart_model, tokenizer):
super().__init__()
self.tokenizer = tokenizer
self.vit = vit_model
self.bart = bart_model
self.visual_projection = nn.Linear(
vit_model.config.hidden_size, bart_model.config.d_model)
def forward(self, pixel_values, input_ids=None, attention_mask=None, labels=None):
vit_outputs = self.vit(pixel_values)
if isinstance(vit_outputs, tuple):
last_hidden_state = vit_outputs[0]
else:
last_hidden_state = vit_outputs.last_hidden_state
visual_features = self.visual_projection(last_hidden_state)
if input_ids is not None:
decoder_outputs = self.bart(
labels=input_ids,
encoder_outputs=BaseModelOutput(
last_hidden_state=visual_features),
return_dict=True
)
return decoder_outputs
else:
return visual_features
def generate(self, pixel_values, max_length=50, num_beams=5, early_stopping=True):
self.eval()
with torch.no_grad():
vit_outputs = self.vit(pixel_values)
if isinstance(vit_outputs, tuple):
last_hidden_state = vit_outputs[0]
else:
last_hidden_state = vit_outputs.last_hidden_state
visual_features = self.visual_projection(last_hidden_state)
generated_ids = self.bart.generate(
encoder_outputs=BaseModelOutput(
last_hidden_state=visual_features),
max_length=max_length,
num_beams=num_beams,
early_stopping=early_stopping,
decoder_start_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
return_dict_in_generate=False
)
return generated_ids