|
import gradio as gr
|
|
from model_architecture import ImageCaptionGenerationWithAttention
|
|
from transformers import BartForConditionalGeneration, BartTokenizer, ViTModel, ViTImageProcessor
|
|
import torch
|
|
from PIL import Image
|
|
from dotenv import load_dotenv
|
|
import os
|
|
import traceback
|
|
|
|
load_dotenv()
|
|
HF_TOKEN = os.getenv('hf_token')
|
|
|
|
|
|
class GenerateCaptions:
|
|
def __init__(self):
|
|
self.device = torch.device(
|
|
"cuda" if torch.cuda.is_available() else "cpu")
|
|
vit_model = ViTModel.from_pretrained(
|
|
"google/vit-base-patch16-224", token=HF_TOKEN).to(self.device)
|
|
bart_model = BartForConditionalGeneration.from_pretrained(
|
|
"facebook/bart-base").to(self.device)
|
|
self.processor = ViTImageProcessor.from_pretrained(
|
|
"google/vit-base-patch16-224")
|
|
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
|
self.model = ImageCaptionGenerationWithAttention(
|
|
vit_model, bart_model, self.tokenizer)
|
|
self.model.load_state_dict(torch.load(
|
|
'image_captioning_model_state_dict.pt', map_location=self.device))
|
|
self.model.eval()
|
|
|
|
def generate_caption(self, frame, max_length=50, num_beams=5):
|
|
try:
|
|
image_pixel_values = self.processor(
|
|
frame, return_tensors="pt").pixel_values
|
|
generated_caption_ids = self.model.generate(
|
|
image_pixel_values, max_length, num_beams)
|
|
return self.tokenizer.decode(generated_caption_ids[0], skip_special_tokens=True)
|
|
except Exception as e:
|
|
print(e)
|
|
print(traceback.format_exc())
|
|
|
|
|
|
gc = GenerateCaptions()
|
|
|
|
demo = gr.Interface(
|
|
fn=gc.generate_caption,
|
|
inputs=gr.Image(type='pil'),
|
|
outputs="text",
|
|
title="Image Caption with Attention",
|
|
examples=['Image.jpg', 'Image 2.jpg'],
|
|
submit_btn='Generate Caption',
|
|
flagging_mode='never'
|
|
)
|
|
|
|
|
|
demo.launch()
|
|
|