Spaces:
Running
Running
Upload 2 files
Browse files- app.py +178 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import chromadb
|
3 |
+
from chromadb.config import Settings
|
4 |
+
from transformers import CLIPProcessor, CLIPModel
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import logging
|
9 |
+
import uuid
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
+
import requests
|
13 |
+
import json
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
import shutil
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
HF_TOKEN = os.getenv('hf_token')
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
try:
|
22 |
+
temp_dir = 'temp_folder'
|
23 |
+
if 'cleaned_temp' not in st.session_state:
|
24 |
+
if os.path.exists(temp_dir):
|
25 |
+
shutil.rmtree(temp_dir)
|
26 |
+
os.makedirs(temp_dir, exist_ok=True)
|
27 |
+
st.session_state.cleaned_temp = True
|
28 |
+
|
29 |
+
@st.cache_resource
|
30 |
+
def load_model():
|
31 |
+
device = 'cpu'
|
32 |
+
processor = CLIPProcessor.from_pretrained(
|
33 |
+
"openai/clip-vit-large-patch14", token=HF_TOKEN)
|
34 |
+
model = CLIPModel.from_pretrained(
|
35 |
+
"openai/clip-vit-large-patch14", token=HF_TOKEN)
|
36 |
+
model.eval().to(device)
|
37 |
+
return processor, model
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def load_chromadb():
|
41 |
+
chroma_client = chromadb.Client(
|
42 |
+
path='Data', settings=Settings(anonymized_telemetry=False))
|
43 |
+
collection = chroma_client.get_or_create_collection(name='images')
|
44 |
+
return chroma_client, collection
|
45 |
+
|
46 |
+
def resize_image(image_path, size=(224, 224)):
|
47 |
+
if isinstance(image_path, str):
|
48 |
+
img = Image.open(image_path).convert("RGB")
|
49 |
+
else:
|
50 |
+
img = Image.open(image_path).convert("RGB")
|
51 |
+
img_resized = img.resize(size, Image.LANCZOS)
|
52 |
+
return img_resized
|
53 |
+
|
54 |
+
def get_image_embedding(image, model, preprocess, device='cpu'):
|
55 |
+
image = Image.open(f'{image}').convert('RGB')
|
56 |
+
input_tensor = preprocess(images=[image], return_tensors='pt')[
|
57 |
+
'pixel_values'].to(device)
|
58 |
+
with torch.no_grad():
|
59 |
+
embedding = model.get_image_features(
|
60 |
+
pixel_values=input_tensor)
|
61 |
+
|
62 |
+
return torch.nn.functional.normalize(embedding, p=2, dim=1)
|
63 |
+
|
64 |
+
def extract_frames(v_path, frame_interval=30):
|
65 |
+
cap = cv2.VideoCapture(v_path)
|
66 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
67 |
+
frame_rate = int(cap.get(cv2.CAP_PROP_FPS))
|
68 |
+
total_seconds = frame_count//frame_rate
|
69 |
+
frame_idx = 0
|
70 |
+
saved_frames = 0
|
71 |
+
while cap.isOpened():
|
72 |
+
ret, frame = cap.read()
|
73 |
+
if not ret:
|
74 |
+
break
|
75 |
+
if frame_idx % frame_interval == 0:
|
76 |
+
unique_image_id = str(uuid.uuid4())
|
77 |
+
frame_name = f"{temp_dir}/frame_{unique_image_id}_{saved_frames}.jpg"
|
78 |
+
cv2.imwrite(frame_name, frame)
|
79 |
+
|
80 |
+
saved_frames += 1
|
81 |
+
frame_idx += 1
|
82 |
+
cap.release()
|
83 |
+
|
84 |
+
def insert_into_db(collection, dir):
|
85 |
+
embedding_list = []
|
86 |
+
file_names = []
|
87 |
+
ids = []
|
88 |
+
with st.status("Generating embedding... ⏳", expanded=True) as status:
|
89 |
+
for i in os.listdir(dir):
|
90 |
+
embedding = get_image_embedding(
|
91 |
+
f"{dir}/{i}", model, processor)
|
92 |
+
embedding_list.append(
|
93 |
+
embedding.squeeze(0).numpy().tolist())
|
94 |
+
file_names.append(
|
95 |
+
{'path': f"{dir}/{i}", 'type': 'photo'})
|
96 |
+
unique_id = str(uuid.uuid4())
|
97 |
+
ids.append(unique_id)
|
98 |
+
status.update(label="Embedding generation complete",
|
99 |
+
state="complete")
|
100 |
+
|
101 |
+
collection.add(
|
102 |
+
embeddings=embedding_list,
|
103 |
+
ids=ids,
|
104 |
+
metadatas=file_names
|
105 |
+
)
|
106 |
+
logger.info("Data inserted into DB")
|
107 |
+
|
108 |
+
processor, model = load_model()
|
109 |
+
logger.info("Model and processor loaded")
|
110 |
+
client, collection = load_chromadb()
|
111 |
+
logger.info("ChromaDB loaded")
|
112 |
+
logger.info(
|
113 |
+
f"Connected to ChromaDB collection images with {collection.count()} items")
|
114 |
+
|
115 |
+
st.title("Extract frames from video using text")
|
116 |
+
# Upload section
|
117 |
+
st.sidebar.subheader("Upload video")
|
118 |
+
video_file = st.sidebar.file_uploader(
|
119 |
+
"Upload videos", type=["mp4", "webm", "avi", "mov"], accept_multiple_files=False
|
120 |
+
)
|
121 |
+
num_images = st.sidebar.slider(
|
122 |
+
"Number of images to be shown", min_value=1, max_value=10, value=3)
|
123 |
+
if video_file:
|
124 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
|
125 |
+
tmpfile.write(video_file.read())
|
126 |
+
video_path = tmpfile.name
|
127 |
+
st.video(video_path)
|
128 |
+
st.sidebar.subheader("Add uploaded videos to collection")
|
129 |
+
if st.sidebar.button("Add uploaded video"):
|
130 |
+
extract_frames(video_path)
|
131 |
+
insert_into_db(collection, temp_dir)
|
132 |
+
else:
|
133 |
+
video_path = 'Videos/Video.mp4'
|
134 |
+
st.video(video_path)
|
135 |
+
st.write(
|
136 |
+
f"Video credits: https://www.kaggle.com/datasets/icebearisin/raw-skates")
|
137 |
+
|
138 |
+
st.write("Enter the description of image to be extracted from the video")
|
139 |
+
text_input = st.text_input("Description", "Flying Skater")
|
140 |
+
if st.button("Search"):
|
141 |
+
if text_input.strip():
|
142 |
+
params = {'text': text_input.strip()}
|
143 |
+
response = requests.get(
|
144 |
+
'https://ashish-001-text-embedding-api.hf.space/embedding', params=params)
|
145 |
+
if response.status_code == 200:
|
146 |
+
logger.info("Embedding returned by API successfully")
|
147 |
+
data = json.loads(response.content)
|
148 |
+
embedding = data['embedding']
|
149 |
+
results = collection.query(
|
150 |
+
query_embeddings=[embedding],
|
151 |
+
n_results=num_images
|
152 |
+
)
|
153 |
+
images = [results['metadatas'][0][i]['path']
|
154 |
+
for i in range(len(results['metadatas'][0]))]
|
155 |
+
distances = [results['distances'][0][i]
|
156 |
+
for i in range(len(results['metadatas'][0]))]
|
157 |
+
if images:
|
158 |
+
cols_per_row = 3
|
159 |
+
rows = (len(images)+cols_per_row-1)//cols_per_row
|
160 |
+
for row in range(rows):
|
161 |
+
cols = st.columns(cols_per_row)
|
162 |
+
for col_idx, col in enumerate(cols):
|
163 |
+
img_idx = row*cols_per_row+col_idx
|
164 |
+
if img_idx < len(images):
|
165 |
+
resized_img = resize_image(
|
166 |
+
images[img_idx])
|
167 |
+
col.image(resized_img,
|
168 |
+
caption=f"Image {img_idx+1}", use_container_width=True)
|
169 |
+
else:
|
170 |
+
st.write("No image found")
|
171 |
+
else:
|
172 |
+
st.write("Please try again later")
|
173 |
+
logger.info(f"status code {response.status_code} returned")
|
174 |
+
else:
|
175 |
+
st.write("Please enter text in the text area")
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
logger.exception(f"Exception occured, {e}")
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.50.3
|
2 |
+
streamlit==1.44.1
|
3 |
+
chromadb==0.6.3
|
4 |
+
requests==2.32.3
|
5 |
+
torch==2.6.0
|
6 |
+
python-dotenv==1.1.0
|
7 |
+
opencv-python==4.11.0.86
|