File size: 900 Bytes
dab0a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cb882
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from transformers import BertTokenizer, BertForSequenceClassification
import torch
import streamlit as st

tokenizer = BertTokenizer.from_pretrained(
    "ashish-001/Bert-Amazon-review-sentiment-classifier")
model = BertForSequenceClassification.from_pretrained(
    "ashish-001/Bert-Amazon-review-sentiment-classifier")


def classify_text(text):
    inputs = tokenizer(
        text,
        max_length=256,
        truncation=True,
        padding="max_length",
        return_tensors="pt"
    )
    output = model(**inputs)
    logits = output.logits
    probs = torch.nn.functional.sigmoid(logits)
    return probs


st.title("Amazon Review Sentiment classifier")
data = st.text_area("Enter or paste a review")
if st.button('Predict'):
    prediction = classify_text(data)
    st.header(
        f"Negative Confidence: {prediction[0][0].item()}, Positive Confidence: {prediction[0][1].item()}")