falcon_7b_coder / app.py
ashioyajotham's picture
Create app.py
20fd975
raw
history blame
4.76 kB
!pip install -q -U trl transformers accelerate git+https://github.com/huggingface/peft.git
!pip install -q datasets bitsandbytes einops wandb
from datasets import load_dataset
# Specify the name of the dataset
dataset_name = "yahma/alpaca-cleaned"
# Load the dataset from the specified name and select the "train" split
dataset = load_dataset(dataset_name, split="train")
# We will be loading the Falcon 7B model, applying 4bit quantization to it, and then adding LoRA adapters to the model.
import torch
from transformers import FalconForCausalLM, AutoTokenizer, BitsAndBytesConfig
# Defining the name of the Falcon model
model_name = "ybelkada/falcon-7b-sharded-bf16"
# Configuring the BitsAndBytes quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
# Loading the Falcon model with quantization configuration
model = FalconForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True
)
# Disabling cache usage in the model configuration
model.config.use_cache = False
# Load the tokenizer for the Falcon 7B model with remote code trust
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Set the padding token to be the same as the end-of-sequence token
tokenizer.pad_token = tokenizer.eos_token
# Import the necessary module for LoRA configuration
from peft import LoraConfig
# Define the parameters for LoRA configuration
lora_alpha = 16
lora_dropout = 0.1
lora_r = 64
# Create the LoRA configuration object
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM",
target_modules=[
"query_key_value",
"dense",
"dense_h_to_4h",
"dense_4h_to_h",
]
)
from transformers import TrainingArguments
# Define the directory to save training results
output_dir = "./results"
# Set the batch size per device during training
per_device_train_batch_size = 4
# Number of steps to accumulate gradients before updating the model
gradient_accumulation_steps = 4
# Choose the optimizer type (e.g., "paged_adamw_32bit")
optim = "paged_adamw_32bit"
# Interval to save model checkpoints (every 10 steps)
save_steps = 10
# Interval to log training metrics (every 10 steps)
logging_steps = 10
# Learning rate for optimization
learning_rate = 2e-4
# Maximum gradient norm for gradient clipping
max_grad_norm = 0.3
# Maximum number of training steps
max_steps = 50
# Warmup ratio for learning rate scheduling
warmup_ratio = 0.03
# Type of learning rate scheduler (e.g., "constant")
lr_scheduler_type = "constant"
# Create a TrainingArguments object to configure the training process
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
fp16=True, # Use mixed precision training (16-bit)
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=True,
lr_scheduler_type=lr_scheduler_type,
)
dataset = dataset.map(lambda x: {"text": x["input"]+x["output"]})
# Import the SFTTrainer from the TRL library
from trl import SFTTrainer
# Set the maximum sequence length
max_seq_length = 512
# Create a trainer instance using SFTTrainer
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
)
# Iterate through the named modules of the trainer's model
for name, module in trainer.model.named_modules():
# Check if the name contains "norm"
if "norm" in name:
# Convert the module to use torch.float32 data type
module = module.to(torch.float32)
trainer.train()
prompt = "Generate a python script to add prime numbers between one and ten"
inputs = tokenizer.encode(prompt, return_tensors='pt')
outputs = model.generate(inputs, max_length=100, temperature = .7, do_sample=True)
completion = tokenizer.decode(outputs[0])
print(completion)
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint_name="ArmelR/starcoder-gradio-v0"
model = AutoModelForCausalLM.from_pretrained(checkpoint_name)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_name)
prompt = "Create a gradio application that help to convert temperature in celcius into temperature in Fahrenheit"
inputs = tokenizer(f"Question: {prompt}\n\nAnswer: ", return_tensors="pt")
outputs = model.generate(
inputs["input_ids"],
temperature=0.2,
top_p=0.95,
max_new_tokens=200
)
input_len=len(inputs["input_ids"])
print(tokenizer.decode(outputs[0][input_len:]))