Spaces:
Running
Running
Commit
·
ca3e8cf
1
Parent(s):
f821f11
Delete app.py
Browse files
app.py
DELETED
@@ -1,340 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
from transformers import pipeline
|
4 |
-
from stqdm import stqdm
|
5 |
-
from simplet5 import SimpleT5
|
6 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
-
from transformers import BertTokenizer, TFBertForSequenceClassification
|
8 |
-
from tensorflow.keras.models import load_model
|
9 |
-
from tensorflow.nn import softmax
|
10 |
-
import numpy as np
|
11 |
-
from datetime import datetime
|
12 |
-
import logging
|
13 |
-
from constants import sub_themes_dict
|
14 |
-
|
15 |
-
date = datetime.now().strftime(r"%Y-%m-%d")
|
16 |
-
model_classes = {
|
17 |
-
0: "Ads",
|
18 |
-
1: "Apps",
|
19 |
-
2: "Battery",
|
20 |
-
3: "Charging",
|
21 |
-
4: "Delivery",
|
22 |
-
5: "Display",
|
23 |
-
6: "FOS",
|
24 |
-
7: "HW",
|
25 |
-
8: "Order",
|
26 |
-
9: "Refurb",
|
27 |
-
10: "SD",
|
28 |
-
11: "Setup",
|
29 |
-
12: "Unknown",
|
30 |
-
13: "WiFi",
|
31 |
-
}
|
32 |
-
|
33 |
-
|
34 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
35 |
-
# @st.cache_resource
|
36 |
-
def load_t5():
|
37 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
38 |
-
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
40 |
-
return model, tokenizer
|
41 |
-
|
42 |
-
|
43 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
44 |
-
# @st.cache_resource
|
45 |
-
def custom_model():
|
46 |
-
return pipeline("summarization", model="my_awesome_sum/")
|
47 |
-
|
48 |
-
|
49 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
50 |
-
# @st.cache_resource
|
51 |
-
def convert_df(df):
|
52 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
53 |
-
return df.to_csv(index=False).encode("utf-8")
|
54 |
-
|
55 |
-
|
56 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
57 |
-
# @st.cache_resource
|
58 |
-
def load_one_line_summarizer(model):
|
59 |
-
return model.load_model("t5", "snrspeaks/t5-one-line-summary")
|
60 |
-
|
61 |
-
|
62 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
63 |
-
# @st.cache_resource
|
64 |
-
def classify_category():
|
65 |
-
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
66 |
-
new_model = load_model("model")
|
67 |
-
return tokenizer, new_model
|
68 |
-
|
69 |
-
|
70 |
-
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
71 |
-
# @st.cache_resource
|
72 |
-
def classify_sub_theme():
|
73 |
-
tokenizer = BertTokenizer.from_pretrained(
|
74 |
-
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
75 |
-
)
|
76 |
-
new_model = TFBertForSequenceClassification.from_pretrained(
|
77 |
-
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
78 |
-
)
|
79 |
-
return tokenizer, new_model
|
80 |
-
|
81 |
-
|
82 |
-
st.set_page_config(layout="wide", page_title="Amazon Review Summarizer")
|
83 |
-
st.title("Amazon Review Summarizer")
|
84 |
-
|
85 |
-
uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"])
|
86 |
-
summarizer_option = st.selectbox(
|
87 |
-
"Select Summarizer",
|
88 |
-
("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
|
89 |
-
)
|
90 |
-
col1, col2, col3 = st.columns([1, 1, 1])
|
91 |
-
|
92 |
-
with col1:
|
93 |
-
summary_yes = st.checkbox("Summrization", value=False)
|
94 |
-
|
95 |
-
with col2:
|
96 |
-
classification = st.checkbox("Classify Category", value=True)
|
97 |
-
|
98 |
-
with col3:
|
99 |
-
sub_theme = st.checkbox("Sub theme classification", value=True)
|
100 |
-
|
101 |
-
ps = st.empty()
|
102 |
-
|
103 |
-
if st.button("Process", type="primary"):
|
104 |
-
cancel_button = st.empty()
|
105 |
-
cancel_button2 = st.empty()
|
106 |
-
cancel_button3 = st.empty()
|
107 |
-
if uploaded_file is not None:
|
108 |
-
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
109 |
-
df = pd.read_excel(uploaded_file, engine="openpyxl")
|
110 |
-
if uploaded_file.name.split(".")[-1] in [".csv"]:
|
111 |
-
df = pd.read_csv(uploaded_file)
|
112 |
-
columns = df.columns.values.tolist()
|
113 |
-
columns = [x.lower() for x in columns]
|
114 |
-
df.columns = columns
|
115 |
-
print(summarizer_option)
|
116 |
-
output = pd.DataFrame()
|
117 |
-
try:
|
118 |
-
text = df["text"].values.tolist()
|
119 |
-
output["text"] = text
|
120 |
-
if summarizer_option == "Custom trained on the dataset":
|
121 |
-
if summary_yes:
|
122 |
-
model = custom_model()
|
123 |
-
|
124 |
-
progress_text = "Summarization in progress. Please wait."
|
125 |
-
summary = []
|
126 |
-
|
127 |
-
for x in stqdm(range(len(text))):
|
128 |
-
if cancel_button.button("Cancel", key=x):
|
129 |
-
del model
|
130 |
-
break
|
131 |
-
try:
|
132 |
-
summary.append(
|
133 |
-
model(
|
134 |
-
f"summarize: {text[x]}",
|
135 |
-
max_length=50,
|
136 |
-
early_stopping=True,
|
137 |
-
)[0]["summary_text"]
|
138 |
-
)
|
139 |
-
except:
|
140 |
-
pass
|
141 |
-
output["summary"] = summary
|
142 |
-
del model
|
143 |
-
if classification:
|
144 |
-
classification_token, classification_model = classify_category()
|
145 |
-
tf_batch = classification_token(
|
146 |
-
text,
|
147 |
-
max_length=128,
|
148 |
-
padding=True,
|
149 |
-
truncation=True,
|
150 |
-
return_tensors="tf",
|
151 |
-
)
|
152 |
-
with st.spinner(text="identifying theme"):
|
153 |
-
tf_outputs = classification_model(tf_batch)
|
154 |
-
classes = []
|
155 |
-
with st.spinner(text="creating output file"):
|
156 |
-
for x in stqdm(range(len(text))):
|
157 |
-
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
158 |
-
label = np.argmax(tf_o, axis=0)
|
159 |
-
keys = model_classes
|
160 |
-
classes.append(keys.get(label))
|
161 |
-
output["category"] = classes
|
162 |
-
del classification_token, classification_model
|
163 |
-
if sub_theme:
|
164 |
-
classification_token, classification_model = classify_sub_theme()
|
165 |
-
tf_batch = classification_token(
|
166 |
-
text,
|
167 |
-
max_length=128,
|
168 |
-
padding=True,
|
169 |
-
truncation=True,
|
170 |
-
return_tensors="tf",
|
171 |
-
)
|
172 |
-
with st.spinner(text="identifying sub theme"):
|
173 |
-
tf_outputs = classification_model(tf_batch)
|
174 |
-
classes = []
|
175 |
-
with st.spinner(text="creating output file"):
|
176 |
-
for x in stqdm(range(len(text))):
|
177 |
-
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
178 |
-
label = np.argmax(tf_o, axis=0)
|
179 |
-
keys = sub_themes_dict
|
180 |
-
classes.append(keys.get(label))
|
181 |
-
output["sub theme"] = classes
|
182 |
-
del classification_token, classification_model
|
183 |
-
|
184 |
-
csv = convert_df(output)
|
185 |
-
st.download_button(
|
186 |
-
label="Download data as CSV",
|
187 |
-
data=csv,
|
188 |
-
file_name=f"{summarizer_option}_{date}_df.csv",
|
189 |
-
mime="text/csv",
|
190 |
-
)
|
191 |
-
if summarizer_option == "t5-base":
|
192 |
-
if summary_yes:
|
193 |
-
model, tokenizer = load_t5()
|
194 |
-
summary = []
|
195 |
-
for x in stqdm(range(len(text))):
|
196 |
-
if cancel_button2.button("Cancel", key=x):
|
197 |
-
del model, tokenizer
|
198 |
-
break
|
199 |
-
tokens_input = tokenizer.encode(
|
200 |
-
"summarize: " + text[x],
|
201 |
-
return_tensors="pt",
|
202 |
-
max_length=tokenizer.model_max_length,
|
203 |
-
truncation=True,
|
204 |
-
)
|
205 |
-
summary_ids = model.generate(
|
206 |
-
tokens_input,
|
207 |
-
min_length=80,
|
208 |
-
max_length=150,
|
209 |
-
length_penalty=20,
|
210 |
-
num_beams=2,
|
211 |
-
)
|
212 |
-
summary_gen = tokenizer.decode(
|
213 |
-
summary_ids[0], skip_special_tokens=True
|
214 |
-
)
|
215 |
-
summary.append(summary_gen)
|
216 |
-
del model, tokenizer
|
217 |
-
output["summary"] = summary
|
218 |
-
|
219 |
-
if classification:
|
220 |
-
classification_token, classification_model = classify_category()
|
221 |
-
tf_batch = classification_token(
|
222 |
-
text,
|
223 |
-
max_length=128,
|
224 |
-
padding=True,
|
225 |
-
truncation=True,
|
226 |
-
return_tensors="tf",
|
227 |
-
)
|
228 |
-
with st.spinner(text="identifying theme"):
|
229 |
-
tf_outputs = classification_model(tf_batch)
|
230 |
-
classes = []
|
231 |
-
with st.spinner(text="creating output file"):
|
232 |
-
for x in stqdm(range(len(text))):
|
233 |
-
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
234 |
-
label = np.argmax(tf_o, axis=0)
|
235 |
-
keys = model_classes
|
236 |
-
classes.append(keys.get(label))
|
237 |
-
output["category"] = classes
|
238 |
-
del classification_token, classification_model
|
239 |
-
if sub_theme:
|
240 |
-
classification_token, classification_model = classify_sub_theme()
|
241 |
-
tf_batch = classification_token(
|
242 |
-
text,
|
243 |
-
max_length=128,
|
244 |
-
padding=True,
|
245 |
-
truncation=True,
|
246 |
-
return_tensors="tf",
|
247 |
-
)
|
248 |
-
with st.spinner(text="identifying sub theme"):
|
249 |
-
tf_outputs = classification_model(tf_batch)
|
250 |
-
classes = []
|
251 |
-
with st.spinner(text="creating output file"):
|
252 |
-
for x in stqdm(range(len(text))):
|
253 |
-
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
254 |
-
label = np.argmax(tf_o, axis=0)
|
255 |
-
keys = sub_themes_dict
|
256 |
-
classes.append(keys.get(label))
|
257 |
-
output["sub theme"] = classes
|
258 |
-
del classification_token, classification_model
|
259 |
-
csv = convert_df(output)
|
260 |
-
st.download_button(
|
261 |
-
label="Download data as CSV",
|
262 |
-
data=csv,
|
263 |
-
file_name=f"{summarizer_option}_{date}_df.csv",
|
264 |
-
mime="text/csv",
|
265 |
-
)
|
266 |
-
|
267 |
-
if summarizer_option == "t5-one-line-summary":
|
268 |
-
if summary_yes:
|
269 |
-
model = SimpleT5()
|
270 |
-
load_one_line_summarizer(model=model)
|
271 |
-
|
272 |
-
summary = []
|
273 |
-
for x in stqdm(range(len(text))):
|
274 |
-
if cancel_button3.button("Cancel", key=x):
|
275 |
-
del model
|
276 |
-
break
|
277 |
-
try:
|
278 |
-
summary.append(model.predict(text[x])[0])
|
279 |
-
except:
|
280 |
-
pass
|
281 |
-
output["summary"] = summary
|
282 |
-
del model
|
283 |
-
|
284 |
-
if classification:
|
285 |
-
classification_token, classification_model = classify_category()
|
286 |
-
tf_batch = classification_token(
|
287 |
-
text,
|
288 |
-
max_length=128,
|
289 |
-
padding=True,
|
290 |
-
truncation=True,
|
291 |
-
return_tensors="tf",
|
292 |
-
)
|
293 |
-
with st.spinner(text="identifying theme"):
|
294 |
-
tf_outputs = classification_model(tf_batch)
|
295 |
-
classes = []
|
296 |
-
with st.spinner(text="creating output file"):
|
297 |
-
for x in stqdm(range(len(text))):
|
298 |
-
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
299 |
-
label = np.argmax(tf_o, axis=0)
|
300 |
-
keys = model_classes
|
301 |
-
classes.append(keys.get(label))
|
302 |
-
output["category"] = classes
|
303 |
-
del classification_token, classification_model
|
304 |
-
if sub_theme:
|
305 |
-
classification_token, classification_model = classify_sub_theme()
|
306 |
-
tf_batch = classification_token(
|
307 |
-
text,
|
308 |
-
max_length=128,
|
309 |
-
padding=True,
|
310 |
-
truncation=True,
|
311 |
-
return_tensors="tf",
|
312 |
-
)
|
313 |
-
with st.spinner(text="identifying sub theme"):
|
314 |
-
tf_outputs = classification_model(tf_batch)
|
315 |
-
classes = []
|
316 |
-
with st.spinner(text="creating output file"):
|
317 |
-
for x in stqdm(range(len(text))):
|
318 |
-
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
319 |
-
label = np.argmax(tf_o, axis=0)
|
320 |
-
keys = sub_themes_dict
|
321 |
-
classes.append(keys.get(label))
|
322 |
-
output["sub theme"] = classes
|
323 |
-
del classification_token, classification_model
|
324 |
-
|
325 |
-
csv = convert_df(output)
|
326 |
-
st.download_button(
|
327 |
-
label="Download data as CSV",
|
328 |
-
data=csv,
|
329 |
-
file_name=f"{summarizer_option}_{date}_df.csv",
|
330 |
-
mime="text/csv",
|
331 |
-
)
|
332 |
-
|
333 |
-
except KeyError:
|
334 |
-
st.error(
|
335 |
-
"Please Make sure that your data must have a column named text",
|
336 |
-
icon="🚨",
|
337 |
-
)
|
338 |
-
st.info("Text column must have amazon reviews", icon="ℹ️")
|
339 |
-
except BaseException as e:
|
340 |
-
logging.exception("An exception was occurred")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|