ashhadahsan commited on
Commit
5afe7ea
·
1 Parent(s): 97828eb

added cache button

Browse files
Files changed (1) hide show
  1. app.py +14 -16
app.py CHANGED
@@ -1,5 +1,4 @@
1
- import subprocess
2
- subprocess.check_call(["python", '-m', 'pip', 'install',"--upgrade", 'streamlit']) # upgrade pkg
3
 
4
  import streamlit as st
5
  import pandas as pd
@@ -35,7 +34,7 @@ model_classes ={
35
  13: "WiFi",
36
  }
37
 
38
- @st.cache
39
  def load_t5():
40
  model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
41
 
@@ -43,23 +42,23 @@ def load_t5():
43
  return model, tokenizer
44
 
45
 
46
- @st.cache
47
  def custom_model():
48
  return pipeline("summarization", model="my_awesome_sum/")
49
 
50
 
51
- @st.cache
52
  def convert_df(df):
53
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
54
  return df.to_csv(index=False).encode("utf-8")
55
 
56
 
57
- @st.cache
58
  def load_one_line_summarizer(model):
59
  return model.load_model("t5", "snrspeaks/t5-one-line-summary")
60
 
61
 
62
- @st.cache
63
  def classify_category():
64
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
65
  new_model = load_model("model")
@@ -75,16 +74,15 @@ summarizer_option = st.selectbox(
75
  ("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
76
  )
77
  classification = st.checkbox("Classify Category", value=True)
78
- hide_streamlit_style = """
79
- <style>
80
- #MainMenu {visibility: hidden;}
81
- footer {visibility: hidden;}
82
- </style>
83
- """
84
- # st.markdown(hide_streamlit_style, unsafe_allow_html=True)
85
- st.write(st.__version__)
86
- st.write(pip.__version__)
87
  ps = st.empty()
 
 
 
 
 
 
 
88
  if st.button("Process",type="primary"):
89
  cancel_button=st.empty()
90
  cancel_button2=st.empty()
 
1
+
 
2
 
3
  import streamlit as st
4
  import pandas as pd
 
34
  13: "WiFi",
35
  }
36
 
37
+ @st.cache(suppress_st_warning=True)
38
  def load_t5():
39
  model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
40
 
 
42
  return model, tokenizer
43
 
44
 
45
+ @st.cache(suppress_st_warning=True)
46
  def custom_model():
47
  return pipeline("summarization", model="my_awesome_sum/")
48
 
49
 
50
+ @st.cache(suppress_st_warning=True)
51
  def convert_df(df):
52
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
53
  return df.to_csv(index=False).encode("utf-8")
54
 
55
 
56
+ @st.cache(suppress_st_warning=True)
57
  def load_one_line_summarizer(model):
58
  return model.load_model("t5", "snrspeaks/t5-one-line-summary")
59
 
60
 
61
+ @st.cache(suppress_st_warning=True)
62
  def classify_category():
63
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
64
  new_model = load_model("model")
 
74
  ("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
75
  )
76
  classification = st.checkbox("Classify Category", value=True)
77
+
 
 
 
 
 
 
 
 
78
  ps = st.empty()
79
+ cache_button=st.empty()
80
+ msg=st.empty()
81
+ if cache_button.button("Clear"):
82
+ caching.clear_cache()
83
+ st.balloons()
84
+ msg.error("Cache is cleared, please reload to scrape new values")
85
+
86
  if st.button("Process",type="primary"):
87
  cancel_button=st.empty()
88
  cancel_button2=st.empty()