Spaces:
Running
Running
Commit
·
3d51c8f
1
Parent(s):
5521456
added sub theme
Browse files
app.py
CHANGED
@@ -13,9 +13,10 @@ import logging
|
|
13 |
import pip
|
14 |
|
15 |
|
|
|
16 |
|
17 |
date = datetime.now().strftime(r"%Y-%m-%d")
|
18 |
-
model_classes ={
|
19 |
0: "Ads",
|
20 |
1: "Apps",
|
21 |
2: "Battery",
|
@@ -32,7 +33,8 @@ model_classes ={
|
|
32 |
13: "WiFi",
|
33 |
}
|
34 |
|
35 |
-
|
|
|
36 |
def load_t5():
|
37 |
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
38 |
|
@@ -40,29 +42,36 @@ def load_t5():
|
|
40 |
return model, tokenizer
|
41 |
|
42 |
|
43 |
-
@st.cache(allow_output_mutation=True,suppress_st_warning=True)
|
44 |
def custom_model():
|
45 |
return pipeline("summarization", model="my_awesome_sum/")
|
46 |
|
47 |
|
48 |
-
@st.cache(allow_output_mutation=True,suppress_st_warning=True)
|
49 |
def convert_df(df):
|
50 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
51 |
return df.to_csv(index=False).encode("utf-8")
|
52 |
|
53 |
|
54 |
-
@st.cache(allow_output_mutation=True,suppress_st_warning=True)
|
55 |
def load_one_line_summarizer(model):
|
56 |
return model.load_model("t5", "snrspeaks/t5-one-line-summary")
|
57 |
|
58 |
|
59 |
-
@st.cache(allow_output_mutation=True,suppress_st_warning=True)
|
60 |
def classify_category():
|
61 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
62 |
new_model = load_model("model")
|
63 |
return tokenizer, new_model
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
st.set_page_config(layout="wide", page_title="Amazon Review Summarizer")
|
67 |
st.title("Amazon Review Summarizer")
|
68 |
|
@@ -71,14 +80,23 @@ summarizer_option = st.selectbox(
|
|
71 |
"Select Summarizer",
|
72 |
("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
|
73 |
)
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
ps = st.empty()
|
77 |
-
|
78 |
-
if st.button("Process",type="primary"):
|
79 |
-
cancel_button=st.empty()
|
80 |
-
cancel_button2=st.empty()
|
81 |
-
cancel_button3=st.empty()
|
82 |
if uploaded_file is not None:
|
83 |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
84 |
|
@@ -89,33 +107,34 @@ if st.button("Process",type="primary"):
|
|
89 |
columns = [x.lower() for x in columns]
|
90 |
df.columns = columns
|
91 |
print(summarizer_option)
|
92 |
-
|
93 |
try:
|
94 |
text = df["text"].values.tolist()
|
|
|
95 |
if summarizer_option == "Custom trained on the dataset":
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
if classification:
|
120 |
classification_token, classification_model = classify_category()
|
121 |
tf_batch = classification_token(
|
@@ -135,6 +154,27 @@ if st.button("Process",type="primary"):
|
|
135 |
keys = model_classes
|
136 |
classes.append(keys.get(label))
|
137 |
output["category"] = classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
csv = convert_df(output)
|
140 |
st.download_button(
|
@@ -144,34 +184,34 @@ if st.button("Process",type="primary"):
|
|
144 |
mime="text/csv",
|
145 |
)
|
146 |
if summarizer_option == "t5-base":
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
|
172 |
-
output = pd.DataFrame(
|
173 |
-
{"text": df["text"].values.tolist(), "summary": summary}
|
174 |
-
)
|
175 |
if classification:
|
176 |
classification_token, classification_model = classify_category()
|
177 |
tf_batch = classification_token(
|
@@ -191,7 +231,27 @@ if st.button("Process",type="primary"):
|
|
191 |
keys = model_classes
|
192 |
classes.append(keys.get(label))
|
193 |
output["category"] = classes
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
csv = convert_df(output)
|
196 |
st.download_button(
|
197 |
label="Download data as CSV",
|
@@ -201,21 +261,22 @@ if st.button("Process",type="primary"):
|
|
201 |
)
|
202 |
|
203 |
if summarizer_option == "t5-one-line-summary":
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
219 |
if classification:
|
220 |
classification_token, classification_model = classify_category()
|
221 |
tf_batch = classification_token(
|
@@ -235,6 +296,27 @@ if st.button("Process",type="primary"):
|
|
235 |
keys = model_classes
|
236 |
classes.append(keys.get(label))
|
237 |
output["category"] = classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
csv = convert_df(output)
|
240 |
st.download_button(
|
@@ -251,4 +333,4 @@ if st.button("Process",type="primary"):
|
|
251 |
)
|
252 |
st.info("Text column must have amazon reviews", icon="ℹ️")
|
253 |
except BaseException as e:
|
254 |
-
logging.exception("An exception was occurred")
|
|
|
13 |
import pip
|
14 |
|
15 |
|
16 |
+
import gc
|
17 |
|
18 |
date = datetime.now().strftime(r"%Y-%m-%d")
|
19 |
+
model_classes = {
|
20 |
0: "Ads",
|
21 |
1: "Apps",
|
22 |
2: "Battery",
|
|
|
33 |
13: "WiFi",
|
34 |
}
|
35 |
|
36 |
+
|
37 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
38 |
def load_t5():
|
39 |
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
40 |
|
|
|
42 |
return model, tokenizer
|
43 |
|
44 |
|
45 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
46 |
def custom_model():
|
47 |
return pipeline("summarization", model="my_awesome_sum/")
|
48 |
|
49 |
|
50 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
51 |
def convert_df(df):
|
52 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
53 |
return df.to_csv(index=False).encode("utf-8")
|
54 |
|
55 |
|
56 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
57 |
def load_one_line_summarizer(model):
|
58 |
return model.load_model("t5", "snrspeaks/t5-one-line-summary")
|
59 |
|
60 |
|
61 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
62 |
def classify_category():
|
63 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
64 |
new_model = load_model("model")
|
65 |
return tokenizer, new_model
|
66 |
|
67 |
|
68 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
69 |
+
def classify_sub_theme():
|
70 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
71 |
+
new_model = load_model("sub_theme_model")
|
72 |
+
return tokenizer, new_model
|
73 |
+
|
74 |
+
|
75 |
st.set_page_config(layout="wide", page_title="Amazon Review Summarizer")
|
76 |
st.title("Amazon Review Summarizer")
|
77 |
|
|
|
80 |
"Select Summarizer",
|
81 |
("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
|
82 |
)
|
83 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
84 |
+
|
85 |
+
with col1:
|
86 |
+
summary_yes = st.checkbox("Summrization", value=False)
|
87 |
+
|
88 |
+
with col2:
|
89 |
+
classification = st.checkbox("Classify Category", value=True)
|
90 |
+
|
91 |
+
with col3:
|
92 |
+
sub_theme = st.checkbox("Sub theme classification", value=True)
|
93 |
|
94 |
ps = st.empty()
|
95 |
+
|
96 |
+
if st.button("Process", type="primary"):
|
97 |
+
cancel_button = st.empty()
|
98 |
+
cancel_button2 = st.empty()
|
99 |
+
cancel_button3 = st.empty()
|
100 |
if uploaded_file is not None:
|
101 |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
102 |
|
|
|
107 |
columns = [x.lower() for x in columns]
|
108 |
df.columns = columns
|
109 |
print(summarizer_option)
|
110 |
+
output = pd.DataFrame()
|
111 |
try:
|
112 |
text = df["text"].values.tolist()
|
113 |
+
output["text"] = text
|
114 |
if summarizer_option == "Custom trained on the dataset":
|
115 |
+
if summary_yes:
|
116 |
+
model = custom_model()
|
117 |
+
|
118 |
+
progress_text = "Summarization in progress. Please wait."
|
119 |
+
summary = []
|
120 |
+
|
121 |
+
for x in stqdm(range(len(text))):
|
122 |
+
|
123 |
+
if cancel_button.button("Cancel", key=x):
|
124 |
+
del model
|
125 |
+
break
|
126 |
+
try:
|
127 |
+
summary.append(
|
128 |
+
model(
|
129 |
+
f"summarize: {text[x]}",
|
130 |
+
max_length=50,
|
131 |
+
early_stopping=True,
|
132 |
+
)[0]["summary_text"]
|
133 |
+
)
|
134 |
+
except:
|
135 |
+
pass
|
136 |
+
output["summary"] = summary
|
137 |
+
del model
|
138 |
if classification:
|
139 |
classification_token, classification_model = classify_category()
|
140 |
tf_batch = classification_token(
|
|
|
154 |
keys = model_classes
|
155 |
classes.append(keys.get(label))
|
156 |
output["category"] = classes
|
157 |
+
del classification_token, classification_model
|
158 |
+
if sub_theme:
|
159 |
+
classification_token, classification_model = classify_sub_theme()
|
160 |
+
tf_batch = classification_token(
|
161 |
+
text,
|
162 |
+
max_length=128,
|
163 |
+
padding=True,
|
164 |
+
truncation=True,
|
165 |
+
return_tensors="tf",
|
166 |
+
)
|
167 |
+
with st.spinner(text="identifying sub theme"):
|
168 |
+
tf_outputs = classification_model(tf_batch)
|
169 |
+
classes = []
|
170 |
+
with st.spinner(text="creating output file"):
|
171 |
+
for x in stqdm(range(len(text))):
|
172 |
+
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
173 |
+
label = np.argmax(tf_o, axis=0)
|
174 |
+
keys = model_classes
|
175 |
+
classes.append(keys.get(label))
|
176 |
+
output["sub theme"] = classes
|
177 |
+
del classification_token, classification_model
|
178 |
|
179 |
csv = convert_df(output)
|
180 |
st.download_button(
|
|
|
184 |
mime="text/csv",
|
185 |
)
|
186 |
if summarizer_option == "t5-base":
|
187 |
+
if summary_yes:
|
188 |
+
model, tokenizer = load_t5()
|
189 |
+
summary = []
|
190 |
+
for x in stqdm(range(len(text))):
|
191 |
+
|
192 |
+
if cancel_button2.button("Cancel", key=x):
|
193 |
+
del model, tokenizer
|
194 |
+
break
|
195 |
+
tokens_input = tokenizer.encode(
|
196 |
+
"summarize: " + text[x],
|
197 |
+
return_tensors="pt",
|
198 |
+
max_length=tokenizer.model_max_length,
|
199 |
+
truncation=True,
|
200 |
+
)
|
201 |
+
summary_ids = model.generate(
|
202 |
+
tokens_input,
|
203 |
+
min_length=80,
|
204 |
+
max_length=150,
|
205 |
+
length_penalty=20,
|
206 |
+
num_beams=2,
|
207 |
+
)
|
208 |
+
summary_gen = tokenizer.decode(
|
209 |
+
summary_ids[0], skip_special_tokens=True
|
210 |
+
)
|
211 |
+
summary.append(summary_gen)
|
212 |
+
del model, tokenizer
|
213 |
+
output["summary"] = summary
|
214 |
|
|
|
|
|
|
|
215 |
if classification:
|
216 |
classification_token, classification_model = classify_category()
|
217 |
tf_batch = classification_token(
|
|
|
231 |
keys = model_classes
|
232 |
classes.append(keys.get(label))
|
233 |
output["category"] = classes
|
234 |
+
del classification_token, classification_model
|
235 |
+
if sub_theme:
|
236 |
+
classification_token, classification_model = classify_sub_theme()
|
237 |
+
tf_batch = classification_token(
|
238 |
+
text,
|
239 |
+
max_length=128,
|
240 |
+
padding=True,
|
241 |
+
truncation=True,
|
242 |
+
return_tensors="tf",
|
243 |
+
)
|
244 |
+
with st.spinner(text="identifying sub theme"):
|
245 |
+
tf_outputs = classification_model(tf_batch)
|
246 |
+
classes = []
|
247 |
+
with st.spinner(text="creating output file"):
|
248 |
+
for x in stqdm(range(len(text))):
|
249 |
+
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
250 |
+
label = np.argmax(tf_o, axis=0)
|
251 |
+
keys = model_classes
|
252 |
+
classes.append(keys.get(label))
|
253 |
+
output["sub theme"] = classes
|
254 |
+
del classification_token, classification_model
|
255 |
csv = convert_df(output)
|
256 |
st.download_button(
|
257 |
label="Download data as CSV",
|
|
|
261 |
)
|
262 |
|
263 |
if summarizer_option == "t5-one-line-summary":
|
264 |
+
if summary_yes:
|
265 |
+
model = SimpleT5()
|
266 |
+
load_one_line_summarizer(model=model)
|
267 |
+
|
268 |
+
summary = []
|
269 |
+
for x in stqdm(range(len(text))):
|
270 |
+
if cancel_button3.button("Cancel", key=x):
|
271 |
+
del model
|
272 |
+
break
|
273 |
+
try:
|
274 |
+
summary.append(model.predict(text[x])[0])
|
275 |
+
except:
|
276 |
+
pass
|
277 |
+
output["summary"] = summary
|
278 |
+
del model
|
279 |
+
|
280 |
if classification:
|
281 |
classification_token, classification_model = classify_category()
|
282 |
tf_batch = classification_token(
|
|
|
296 |
keys = model_classes
|
297 |
classes.append(keys.get(label))
|
298 |
output["category"] = classes
|
299 |
+
del classification_token,classification_model
|
300 |
+
if sub_theme:
|
301 |
+
classification_token, classification_model = classify_sub_theme()
|
302 |
+
tf_batch = classification_token(
|
303 |
+
text,
|
304 |
+
max_length=128,
|
305 |
+
padding=True,
|
306 |
+
truncation=True,
|
307 |
+
return_tensors="tf",
|
308 |
+
)
|
309 |
+
with st.spinner(text="identifying sub theme"):
|
310 |
+
tf_outputs = classification_model(tf_batch)
|
311 |
+
classes = []
|
312 |
+
with st.spinner(text="creating output file"):
|
313 |
+
for x in stqdm(range(len(text))):
|
314 |
+
tf_o = softmax(tf_outputs["logits"][x], axis=-1)
|
315 |
+
label = np.argmax(tf_o, axis=0)
|
316 |
+
keys = model_classes
|
317 |
+
classes.append(keys.get(label))
|
318 |
+
output["sub theme"] = classes
|
319 |
+
del classification_token, classification_model
|
320 |
|
321 |
csv = convert_df(output)
|
322 |
st.download_button(
|
|
|
333 |
)
|
334 |
st.info("Text column must have amazon reviews", icon="ℹ️")
|
335 |
except BaseException as e:
|
336 |
+
logging.exception("An exception was occurred")
|