ashhadahsan commited on
Commit
33bc558
·
1 Parent(s): 940a46c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -15
app.py CHANGED
@@ -1,5 +1,3 @@
1
-
2
-
3
  import streamlit as st
4
  import pandas as pd
5
  from transformers import pipeline
@@ -34,7 +32,7 @@ model_classes ={
34
  13: "WiFi",
35
  }
36
 
37
- @st.cache(suppress_st_warning=True,suppress_st_warning=False)
38
  def load_t5():
39
  model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
40
 
@@ -42,23 +40,23 @@ def load_t5():
42
  return model, tokenizer
43
 
44
 
45
- @st.cache(suppress_st_warning=True,suppress_st_warning=False)
46
  def custom_model():
47
  return pipeline("summarization", model="my_awesome_sum/")
48
 
49
 
50
- @st.cache(suppress_st_warning=True,suppress_st_warning=False)
51
  def convert_df(df):
52
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
53
  return df.to_csv(index=False).encode("utf-8")
54
 
55
 
56
- @st.cache(suppress_st_warning=True,suppress_st_warning=False)
57
  def load_one_line_summarizer(model):
58
  return model.load_model("t5", "snrspeaks/t5-one-line-summary")
59
 
60
 
61
- @st.cache(suppress_st_warning=True,suppress_st_warning=False)
62
  def classify_category():
63
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
64
  new_model = load_model("model")
@@ -76,14 +74,6 @@ summarizer_option = st.selectbox(
76
  classification = st.checkbox("Classify Category", value=True)
77
 
78
  ps = st.empty()
79
- cache_button=st.empty()
80
- msg=st.empty()
81
- mutable_object = get_mutable()
82
-
83
- if cache_button.button("Clear"):
84
- mutable_object.clear()
85
- st.balloons()
86
- msg.error("Cache is cleared, please reload to scrape new values")
87
 
88
  if st.button("Process",type="primary"):
89
  cancel_button=st.empty()
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
  from transformers import pipeline
 
32
  13: "WiFi",
33
  }
34
 
35
+ @st.cache(allow_output_mutation=False=True,suppress_st_warning=False)
36
  def load_t5():
37
  model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
38
 
 
40
  return model, tokenizer
41
 
42
 
43
+ @st.cache(allow_output_mutation=False=True,suppress_st_warning=False)
44
  def custom_model():
45
  return pipeline("summarization", model="my_awesome_sum/")
46
 
47
 
48
+ @st.cache(allow_output_mutation=False=True,suppress_st_warning=False)
49
  def convert_df(df):
50
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
51
  return df.to_csv(index=False).encode("utf-8")
52
 
53
 
54
+ @st.cache(allow_output_mutation=False=True,suppress_st_warning=False)
55
  def load_one_line_summarizer(model):
56
  return model.load_model("t5", "snrspeaks/t5-one-line-summary")
57
 
58
 
59
+ @st.cache(allow_output_mutation=False=True,suppress_st_warning=False)
60
  def classify_category():
61
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
62
  new_model = load_model("model")
 
74
  classification = st.checkbox("Classify Category", value=True)
75
 
76
  ps = st.empty()
 
 
 
 
 
 
 
 
77
 
78
  if st.button("Process",type="primary"):
79
  cancel_button=st.empty()