File size: 8,928 Bytes
6f595b5
 
 
 
 
 
4e736ad
 
 
 
 
 
 
 
 
e6730c8
66c205b
 
 
 
 
 
 
 
 
 
 
 
4e736ad
3902384
6f595b5
 
 
 
 
 
 
3902384
6f595b5
 
 
 
 
 
 
3086575
6f595b5
 
3902384
6f595b5
 
 
 
3902384
4e736ad
 
 
 
 
 
6f595b5
 
 
 
 
 
 
 
4e736ad
0302fc1
 
 
 
 
 
 
e7ee4c6
6f595b5
1f4c994
6f595b5
e7ee4c6
6f595b5
e7ee4c6
 
 
6f595b5
 
 
 
4022606
fecaa45
 
4022606
 
4e736ad
4022606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f595b5
4e736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4022606
 
 
 
4e736ad
4022606
6f595b5
4022606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f595b5
4022606
 
 
4e736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
7673771
4e736ad
 
 
 
 
4022606
 
 
 
4e736ad
4022606
 
6f595b5
4022606
 
 
6f595b5
4022606
 
 
 
 
 
 
 
 
4e736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
7673771
4e736ad
 
 
 
 
4022606
 
 
 
4e736ad
4022606
 
4e736ad
4022606
 
 
 
6f595b5
4022606
4e736ad
7673771
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import streamlit as st
import pandas as pd
from transformers import pipeline
from stqdm import stqdm
from simplet5 import SimpleT5
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import BertTokenizer
from tensorflow.keras.models import load_model
from tensorflow.nn import softmax
import numpy as np
from datetime import datetime
import logging

date = datetime.now().strftime(r"%Y-%m-%d")
model_classes = {
    0: 'Ads',
 1: 'Apps',
 2: 'Battery',
 3: 'Charging',
 4: 'Delivery',
 5: 'Display',
 6: 'FOS',
 7: 'HW',
 8: 'Order',
 9: 'Refurb',
 10: 'SD',
 11: 'Setup',
 12: 'Unknown'}

@st.cache
def load_t5():
    model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

    tokenizer = AutoTokenizer.from_pretrained("t5-base")
    return model, tokenizer


@st.cache
def custom_model():
    return pipeline("summarization", model="my_awesome_sum/")


@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(index=False).encode("utf-8")


@st.cache
def load_one_line_summarizer(model):
    return model.load_model("t5", "snrspeaks/t5-one-line-summary")


@st.cache
def classify_category():
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    new_model = load_model("model")
    return tokenizer, new_model


st.set_page_config(layout="wide", page_title="Amazon Review Summarizer")
st.title("Amazon Review Summarizer")

uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"])
summarizer_option = st.selectbox(
    "Select Summarizer",
    ("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
)
classification = st.checkbox("Classify Category", value=True)
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

ps = st.empty()
if st.button("Process",type="primary"):
    if uploaded_file is not None:
        if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:

            df = pd.read_excel(uploaded_file, engine="openpyxl")
        if uploaded_file.name.split(".")[-1] in [".csv"]:
            df = pd.read_csv(uploaded_file)
        columns = df.columns.values.tolist()
        columns = [x.lower() for x in columns]
        df.columns = columns
        print(summarizer_option)

        try:
            text = df["text"].values.tolist()
            if summarizer_option == "Custom trained on the dataset":
                model = custom_model()

                progress_text = "Summarization in progress. Please wait."
                summary = []

                for x in stqdm(range(len(text))):
                    try:
                        summary.append(
                            model(
                                f"summarize: {text[x]}",
                                max_length=50,
                                early_stopping=True,
                            )[0]["summary_text"]
                        )
                    except:
                        pass
                output = pd.DataFrame(
                    {"text": df["text"].values.tolist(), "summary": summary}
                )
                if classification:
                    classification_token, classification_model = classify_category()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = model_classes
                            classes.append(keys.get(label))
                        output["category"] = classes

                csv = convert_df(output)
                st.download_button(
                    label="Download data as CSV",
                    data=csv,
                    file_name=f"{summarizer_option}_{date}_df.csv",
                    mime="text/csv",
                )
            if summarizer_option == "t5-base":
                model, tokenizer = load_t5()
                summary = []
                for x in stqdm(range(len(text))):

                    tokens_input = tokenizer.encode(
                        "summarize: " + text[x],
                        return_tensors="pt",
                        max_length=tokenizer.model_max_length,
                        truncation=True,
                    )
                    summary_ids = model.generate(
                        tokens_input,
                        min_length=80,
                        max_length=150,
                        length_penalty=20,
                        num_beams=2,
                    )
                    summary_gen = tokenizer.decode(
                        summary_ids[0], skip_special_tokens=True
                    )
                    summary.append(summary_gen)

                output = pd.DataFrame(
                    {"text": df["text"].values.tolist(), "summary": summary}
                )
                if classification:
                    classification_token, classification_model = classify_category()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = model_classes
                            classes.append(keys.get(label))
                        output["category"] = classes

                csv = convert_df(output)
                st.download_button(
                    label="Download data as CSV",
                    data=csv,
                    file_name=f"{summarizer_option}_{date}_df.csv",
                    mime="text/csv",
                )

            if summarizer_option == "t5-one-line-summary":
                model = SimpleT5()
                load_one_line_summarizer(model=model)

                summary = []
                for x in stqdm(range(len(text))):
                    try:
                        summary.append(model.predict(text[x])[0])
                    except:
                        pass
                output = pd.DataFrame(
                    {"text": df["text"].values.tolist(), "summary": summary}
                )
                if classification:
                    classification_token, classification_model = classify_category()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = model_classes
                            classes.append(keys.get(label))
                        output["category"] = classes

                csv = convert_df(output)
                st.download_button(
                    label="Download data as CSV",
                    data=csv,
                    file_name=f"{summarizer_option}_{date}_df.csv",
                    mime="text/csv",
                )

        except KeyError:
            st.error(
                "Please Make sure that your data must have a column named text",
                icon="๐Ÿšจ",
            )
            st.info("Text column must have amazon reviews", icon="โ„น๏ธ")
        except BaseException as e:
            logging.exception("An exception was occurred")