zs38's picture
update v0.2
03e6b18
raw
history blame
7.06 kB
import os
import torch
# import spaces
import safetensors
import gradio as gr
from PIL import Image
from loguru import logger
from torchvision import transforms
from huggingface_hub import hf_hub_download, login
from diffusers import FluxPipeline, FluxTransformer2DModel
from projection import ImageEncoder
from transformer_flux_custom import FluxTransformer2DModel as FluxTransformer2DModelWithIP
model_config = './config.json'
pretrained_model_name = 'black-forest-labs/FLUX.1-dev'
adapter_path = 'model-v0.2.safetensors'
adapter_repo_id = "ashen0209/Flux-Character-Consitancy"
conditioner_base_model = 'eva02_large_patch14_448.mim_in22k_ft_in1k'
conditioner_layer_num = 12
device = "cuda" if torch.cuda.is_available() else "cpu"
output_dim = 4096
logger.info(f"pretrained_model_name: {pretrained_model_name}, adapter_repo_id: {adapter_repo_id}, adapter_path: {adapter_path}, conditioner_layer: {conditioner_layer_num}, output_dim {output_dim}, device: {device}")
logger.info("init model")
model = FluxTransformer2DModelWithIP.from_config(model_config, torch_dtype=torch.bfloat16) # type: ignore
logger.info("load model")
copy = FluxTransformer2DModel.from_pretrained(pretrained_model_name, subfolder='transformer', torch_dtype=torch.bfloat16)
model.load_state_dict(copy.state_dict(), strict=False)
del copy
logger.info("load proj")
extra_embedder = ImageEncoder(output_dim, layer_num=conditioner_layer_num, seq_len=2, device=device, base_model=conditioner_base_model).to(device=device, dtype=torch.bfloat16)
logger.info("load pipe")
pipe = FluxPipeline.from_pretrained(pretrained_model_name, transformer=model, torch_dtype=torch.bfloat16)
pipe.to(dtype=torch.bfloat16, device=device)
logger.info("download adapter")
login(token=os.environ['HF_TOKEN'])
file_path = hf_hub_download(repo_id=adapter_repo_id, filename=adapter_path)
logger.info("load adapter")
state_dict = safetensors.torch.load_file(file_path)
state_dict = {'.'.join(k.split('.')[1:]): state_dict[k] for k in state_dict.keys()}
diff = model.load_state_dict(state_dict, strict=False)
diff = extra_embedder.load_state_dict(state_dict, strict=False)
IMAGE_PROCESS_TRANSFORM = transforms.Compose([
transforms.Resize((448, 448)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4815, 0.4578, 0.4082], std=[0.2686, 0.2613, 0.276])
])
# @spaces.GPU
def generate_image(ref_image, ref_image2, prompt, height=512, width=512, num_steps=25, guidance_scale=3.5, seed=0, ip_scale=1.0):
print(f"ref_image: {ref_image.size}, prompt: {prompt}, height: {height}, width: {width}, num_steps: {num_steps}, guidance_scale: {guidance_scale}, ip_scale: {ip_scale}")
with torch.no_grad():
image_refs = map(torch.stack, [
[IMAGE_PROCESS_TRANSFORM(i) for i in [ref_image, ref_image2] if i is not None]
])
image_refs = [i.to(dtype=torch.bfloat16, device='cuda') for i in image_refs]
prompt_embeds, pooled_prompt_embeds, txt_ids = pipe.encode_prompt(prompt, prompt)
visual_prompt_embeds = extra_embedder(image_refs)
prompt_embeds_with_ref = torch.cat([prompt_embeds, visual_prompt_embeds], dim=1)
pipe.transformer.ip_scale = ip_scale
image = pipe(
prompt_embeds=prompt_embeds_with_ref,
pooled_prompt_embeds=pooled_prompt_embeds,
# negative_prompt_embeds=negative_prompt_embeds,
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
).images[0]
return image
examples = [
["assets/ref1.jpg", None, "A woman dancing in the dessert", 512, 768],
["assets/ref1.jpg", "assets/ref_cat.jpg", "A woman holding a cat above her head", 768, 512],
["assets/ref2.jpg", None, "A woman sitting on the beach near the sea", 512, 768],
]
with gr.Blocks() as demo:
# Top-level inputs that are always visible
with gr.Row():
gr.Markdown("""
## Character Consistancy Image Generation based on Flux
""")
with gr.Row():
with gr.Column():
with gr.Row():
ref_image = gr.Image(type="pil", label="Upload Reference Subject Image", width=300)
ref_image2 = gr.Image(type="pil", label="[Optional] compliment or different category", width=200)
description = gr.Textbox(lines=2, placeholder="Describe the desired contents", label="Description Text")
generate_btn = gr.Button("Generate Image")
# Advanced options hidden inside an accordion (click to expand)
with gr.Accordion("Advanced Options", open=False):
height_slider = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Height")
width_slider = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Width")
steps_slider = gr.Slider(minimum=20, maximum=50, value=25, step=1, label="Number of Steps")
guidance_slider = gr.Slider(minimum=1.0, maximum=8.0, value=3.5, step=0.1, label="Guidance Scale")
ref_scale_slider = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, step=0.1, label="Reference Image Scale")
with gr.Column():
output = gr.Image(type="pil", label="Generated Image")
# with gr.Row():
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=50, ):
randomize_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Column(scale=3, min_width=100):
seed_io = gr.Number(label="Seed (if not randomizing)", value=0, interactive=True, )
with gr.Row():
gr.Examples(
label='Click on following examples to load and try',
examples=examples,
inputs=[ref_image, ref_image2, description, height_slider, width_slider],
fn=generate_image,
outputs=output,
# example_labels=['Reference Subject', 'Additional Reference', 'Prompt', 'Height', 'Width'],
cache_examples=True,
cache_mode='lazy'
)
with gr.Row():
gr.Markdown("""
### Tips:
- Images with human subjects tend to perform better than other categories.
- Images where the subject occupies most of the frame with a clean, uncluttered background yield improved results.
- Including multiple subjects of the same category may cause blending issues (this is being improved).
- Despite these factors, most image inputs still produce reasonable and satisfactory results.
""")
# When the button is clicked, pass all inputs to generate_image
generate_btn.click(
fn=generate_image,
inputs=[ref_image, ref_image2, description, height_slider, width_slider, steps_slider, guidance_slider, ref_scale_slider],
outputs=output,
)
if __name__ == "__main__":
demo.launch()
if __name__ == "__main__":
iface.launch()