Spaces:
Sleeping
Sleeping
File size: 8,353 Bytes
31ad3d4 01c97d5 6fb1ca0 31ad3d4 6fb1ca0 31ad3d4 01c97d5 6fb1ca0 31ad3d4 6fb1ca0 31ad3d4 01c97d5 31ad3d4 0edcc33 31ad3d4 0edcc33 31ad3d4 bff8782 0edcc33 30bb4fd bff8782 0edcc33 bff8782 9189111 30bb4fd 9189111 30bb4fd 9189111 30bb4fd 9189111 30bb4fd 9189111 30bb4fd 9189111 30bb4fd 9189111 31ad3d4 0edcc33 31ad3d4 30bb4fd 31ad3d4 01c97d5 0edcc33 31ad3d4 01c97d5 31ad3d4 01c97d5 0edcc33 31ad3d4 0edcc33 31ad3d4 6fb1ca0 31ad3d4 6fb1ca0 60b418c 6fb1ca0 9189111 31ad3d4 01c97d5 31ad3d4 01c97d5 9189111 01c97d5 31ad3d4 01c97d5 bff8782 01c97d5 bff8782 30bb4fd 9189111 0edcc33 01c97d5 0edcc33 01c97d5 31ad3d4 01c97d5 60b418c 31ad3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import json
import os
import random
import re
import sys
import tempfile
import time
from datetime import datetime
from glob import glob
from pathlib import Path
from typing import List, Optional
from uuid import uuid4
from zipfile import ZipFile
import gradio as gr
import numpy as np
import pandas as pd
import requests
from datasets import load_dataset
from decord import VideoReader, cpu
from huggingface_hub import (
CommitScheduler,
HfApi,
InferenceClient,
login,
snapshot_download,
)
from PIL import Image
cached_latest_posts_df = None
cached_top_posts = None
last_fetched = None
last_fetched_top = None
def get_reddit_id(url):
# Regular expression pattern for r/GamePhysics URLs and IDs
pattern = r"https://www\.reddit\.com/r/GamePhysics/comments/([0-9a-zA-Z]+).*|([0-9a-zA-Z]+)"
# Match the URL or ID against the pattern
match = re.match(pattern, url)
if match:
# Extract the post ID from the URL
post_id = match.group(1) or match.group(2)
print(f"Valid GamePhysics post ID: {post_id}")
else:
post_id = url
return post_id
def download_samples(url, video_url, num_frames):
frames = extract_frames_decord(video_url, num_frames)
# Create a temporary directory to store the images
with tempfile.TemporaryDirectory() as temp_dir:
# Save each frame as a JPEG image in the temporary directory
for i, frame in enumerate(frames):
frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
frame.save(
frame_path, format="JPEG", quality=85
) # Adjust quality as needed
# Create a zip file in a persistent location
post_id = get_reddit_id(url)
print(f"Creating zip file for post {post_id}")
zip_path = f"frames-{post_id}.zip"
with ZipFile(zip_path, "w") as zipf:
for i in range(num_frames):
frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
zipf.write(frame_path, os.path.basename(frame_path))
# Return the path of the zip file
return zip_path
def extract_frames_decord(video_path, num_frames=10):
try:
start_time = time.time()
print(f"Extracting {num_frames} frames from {video_path}")
# Load the video
vr = VideoReader(video_path, ctx=cpu(0))
# Calculate the indices for the frames to be extracted
total_frames = len(vr)
frame_indices = np.linspace(
0, total_frames - 1, num_frames, dtype=int, endpoint=False
)
# Extract frames
batch_frames = vr.get_batch(frame_indices).asnumpy()
# Convert frames to PIL Images
frame_images = [
Image.fromarray(batch_frames[i]) for i in range(batch_frames.shape[0])
]
end_time = time.time()
print(f"Decord extraction took {end_time - start_time} seconds")
return frame_images
except Exception as e:
raise Exception(f"Error extracting frames from video: {e}")
def get_top_posts():
global cached_top_posts
global last_fetched_top
# make sure we don't fetch data too often, limit to 1 request per 10 minutes
now_time = datetime.now()
if last_fetched_top is not None and (now_time - last_fetched_top).seconds < 600:
print("Using cached data")
return cached_top_posts
last_fetched_top = now_time
url = "https://www.reddit.com/r/GamePhysics/top/.json?t=month"
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, headers=headers)
if response.status_code != 200:
return []
data = response.json()
# Extract posts from the data
posts = data["data"]["children"]
for post in posts:
title = post["data"]["title"]
post_id = post["data"]["id"]
# print(f"ID: {post_id}, Title: {title}")
# create [post_id, title] list
examples = [[post["data"]["id"], post["data"]["title"]] for post in posts]
# make a dataframe
examples = pd.DataFrame(examples, columns=["post_id", "title"])
cached_top_posts = examples
return examples
def get_latest_posts():
global cached_latest_posts_df
global last_fetched
# make sure we don't fetch data too often, limit to 1 request per 10 minutes
now_time = datetime.now()
if last_fetched is not None and (now_time - last_fetched).seconds < 600:
print("Using cached data")
return cached_latest_posts_df
last_fetched = now_time
url = "https://www.reddit.com/r/GamePhysics/.json"
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, headers=headers)
if response.status_code != 200:
return []
data = response.json()
# Extract posts from the data
posts = data["data"]["children"]
for post in posts:
title = post["data"]["title"]
post_id = post["data"]["id"]
# print(f"ID: {post_id}, Title: {title}")
# create [post_id, title] list
examples = [[post["data"]["id"], post["data"]["title"]] for post in posts]
# make a dataframe
examples = pd.DataFrame(examples, columns=["post_id", "title"])
cached_latest_posts_df = examples
return examples
def row_selected_top(evt: gr.SelectData):
global cached_top_posts
string_value = evt.value
row = evt.index[0]
post_id = cached_top_posts.iloc[row]["post_id"]
return post_id
def row_selected_latest(evt: gr.SelectData):
global cached_latest_posts_df
string_value = evt.value
row = evt.index[0]
post_id = cached_latest_posts_df.iloc[row]["post_id"]
return post_id
def load_video(url):
post_id = get_reddit_id(url)
video_url = f"https://huggingface.co/datasets/asgaardlab/GamePhysicsDailyDump/resolve/main/data/videos/{post_id}.mp4?download=true"
# make sure file exists before returning, make a request without downloading the file
r = requests.head(video_url)
if r.status_code != 200 and r.status_code != 302:
raise gr.Error(
f"Video is not in the repo, please try another post. - {r.status_code }"
)
return video_url
with gr.Blocks() as demo:
gr.Markdown("## Preview GamePhysics")
dummt_title = gr.Textbox(visible=False)
with gr.Row():
with gr.Column():
reddit_id = gr.Textbox(
lines=1, placeholder="Post url or id here", label="URL or Post ID"
)
load_btn = gr.Button("Load")
video_player = gr.Video(interactive=False)
with gr.Column():
gr.Markdown("## Sampled Frames from Video")
num_frames = gr.Slider(minimum=1, maximum=60, step=1, value=10)
sample_decord_btn = gr.Button("Sample decord")
sampled_frames = gr.Gallery()
download_samples_btn = gr.Button("Download Samples")
output_files = gr.File()
download_samples_btn.click(
download_samples,
inputs=[reddit_id, video_player, num_frames],
outputs=[output_files],
)
with gr.Column():
gr.Markdown("## Latest Posts")
with gr.Accordion("Latest Posts"):
latest_post_dataframe = gr.Dataframe()
latest_posts_btn = gr.Button("Refresh Latest Posts")
with gr.Accordion("Top Posts"):
top_posts_dataframe = gr.Dataframe()
top_posts_btn = gr.Button("Refresh Top Posts")
sample_decord_btn.click(
extract_frames_decord,
inputs=[video_player, num_frames],
outputs=[sampled_frames],
)
load_btn.click(load_video, inputs=[reddit_id], outputs=[video_player])
latest_posts_btn.click(get_latest_posts, outputs=[latest_post_dataframe])
top_posts_btn.click(get_top_posts, outputs=[top_posts_dataframe])
demo.load(get_latest_posts, outputs=[latest_post_dataframe])
demo.load(get_top_posts, outputs=[top_posts_dataframe])
latest_post_dataframe.select(fn=row_selected_latest, outputs=[reddit_id]).then(
load_video, inputs=[reddit_id], outputs=[video_player]
)
top_posts_dataframe.select(fn=row_selected_top, outputs=[reddit_id]).then(
load_video, inputs=[reddit_id], outputs=[video_player]
)
demo.launch()
|