File size: 8,353 Bytes
31ad3d4
 
 
 
 
01c97d5
6fb1ca0
31ad3d4
6fb1ca0
31ad3d4
 
 
01c97d5
6fb1ca0
31ad3d4
 
6fb1ca0
31ad3d4
 
01c97d5
31ad3d4
 
 
 
 
 
 
 
 
 
0edcc33
31ad3d4
0edcc33
31ad3d4
bff8782
0edcc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30bb4fd
bff8782
 
 
 
 
 
 
 
 
 
 
0edcc33
 
 
bff8782
 
 
 
 
 
 
9189111
 
30bb4fd
9189111
30bb4fd
 
 
 
9189111
30bb4fd
 
 
 
 
 
 
 
 
 
9189111
30bb4fd
 
 
 
9189111
30bb4fd
 
9189111
30bb4fd
 
 
9189111
31ad3d4
0edcc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ad3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30bb4fd
31ad3d4
 
 
 
 
 
 
 
 
01c97d5
0edcc33
 
 
31ad3d4
01c97d5
 
31ad3d4
01c97d5
 
 
 
 
 
 
0edcc33
31ad3d4
 
0edcc33
 
31ad3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb1ca0
31ad3d4
 
6fb1ca0
 
60b418c
6fb1ca0
 
9189111
31ad3d4
01c97d5
 
 
 
31ad3d4
01c97d5
9189111
01c97d5
 
31ad3d4
01c97d5
 
 
 
 
bff8782
01c97d5
 
 
 
 
 
 
 
bff8782
30bb4fd
 
9189111
 
 
 
 
0edcc33
 
01c97d5
0edcc33
 
01c97d5
31ad3d4
01c97d5
 
 
 
60b418c
 
31ad3d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import json
import os
import random
import re
import sys
import tempfile
import time
from datetime import datetime
from glob import glob
from pathlib import Path
from typing import List, Optional
from uuid import uuid4
from zipfile import ZipFile

import gradio as gr
import numpy as np
import pandas as pd
import requests
from datasets import load_dataset
from decord import VideoReader, cpu
from huggingface_hub import (
    CommitScheduler,
    HfApi,
    InferenceClient,
    login,
    snapshot_download,
)
from PIL import Image

cached_latest_posts_df = None
cached_top_posts = None
last_fetched = None
last_fetched_top = None


def get_reddit_id(url):
    # Regular expression pattern for r/GamePhysics URLs and IDs
    pattern = r"https://www\.reddit\.com/r/GamePhysics/comments/([0-9a-zA-Z]+).*|([0-9a-zA-Z]+)"

    # Match the URL or ID against the pattern
    match = re.match(pattern, url)

    if match:
        # Extract the post ID from the URL
        post_id = match.group(1) or match.group(2)
        print(f"Valid GamePhysics post ID: {post_id}")
    else:
        post_id = url

    return post_id


def download_samples(url, video_url, num_frames):
    frames = extract_frames_decord(video_url, num_frames)

    # Create a temporary directory to store the images
    with tempfile.TemporaryDirectory() as temp_dir:
        # Save each frame as a JPEG image in the temporary directory
        for i, frame in enumerate(frames):
            frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
            frame.save(
                frame_path, format="JPEG", quality=85
            )  # Adjust quality as needed

        # Create a zip file in a persistent location
        post_id = get_reddit_id(url)
        print(f"Creating zip file for post {post_id}")
        zip_path = f"frames-{post_id}.zip"
        with ZipFile(zip_path, "w") as zipf:
            for i in range(num_frames):
                frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
                zipf.write(frame_path, os.path.basename(frame_path))

    # Return the path of the zip file
    return zip_path


def extract_frames_decord(video_path, num_frames=10):
    try:
        start_time = time.time()

        print(f"Extracting {num_frames} frames from {video_path}")

        # Load the video
        vr = VideoReader(video_path, ctx=cpu(0))

        # Calculate the indices for the frames to be extracted
        total_frames = len(vr)
        frame_indices = np.linspace(
            0, total_frames - 1, num_frames, dtype=int, endpoint=False
        )

        # Extract frames
        batch_frames = vr.get_batch(frame_indices).asnumpy()

        # Convert frames to PIL Images
        frame_images = [
            Image.fromarray(batch_frames[i]) for i in range(batch_frames.shape[0])
        ]

        end_time = time.time()
        print(f"Decord extraction took {end_time - start_time} seconds")

        return frame_images
    except Exception as e:
        raise Exception(f"Error extracting frames from video: {e}")


def get_top_posts():
    global cached_top_posts
    global last_fetched_top

    # make sure we don't fetch data too often, limit to 1 request per 10 minutes
    now_time = datetime.now()
    if last_fetched_top is not None and (now_time - last_fetched_top).seconds < 600:
        print("Using cached data")
        return cached_top_posts

    last_fetched_top = now_time
    url = "https://www.reddit.com/r/GamePhysics/top/.json?t=month"
    headers = {"User-Agent": "Mozilla/5.0"}

    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        return []

    data = response.json()

    # Extract posts from the data
    posts = data["data"]["children"]

    for post in posts:
        title = post["data"]["title"]
        post_id = post["data"]["id"]
        # print(f"ID: {post_id}, Title: {title}")

    # create [post_id, title] list
    examples = [[post["data"]["id"], post["data"]["title"]] for post in posts]
    # make a dataframe
    examples = pd.DataFrame(examples, columns=["post_id", "title"])
    cached_top_posts = examples
    return examples


def get_latest_posts():
    global cached_latest_posts_df
    global last_fetched

    # make sure we don't fetch data too often, limit to 1 request per 10 minutes
    now_time = datetime.now()
    if last_fetched is not None and (now_time - last_fetched).seconds < 600:
        print("Using cached data")
        return cached_latest_posts_df

    last_fetched = now_time
    url = "https://www.reddit.com/r/GamePhysics/.json"
    headers = {"User-Agent": "Mozilla/5.0"}

    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        return []

    data = response.json()

    # Extract posts from the data
    posts = data["data"]["children"]

    for post in posts:
        title = post["data"]["title"]
        post_id = post["data"]["id"]
        # print(f"ID: {post_id}, Title: {title}")

    # create [post_id, title] list
    examples = [[post["data"]["id"], post["data"]["title"]] for post in posts]
    # make a dataframe
    examples = pd.DataFrame(examples, columns=["post_id", "title"])
    cached_latest_posts_df = examples
    return examples


def row_selected_top(evt: gr.SelectData):
    global cached_top_posts
    string_value = evt.value
    row = evt.index[0]

    post_id = cached_top_posts.iloc[row]["post_id"]
    return post_id


def row_selected_latest(evt: gr.SelectData):
    global cached_latest_posts_df
    string_value = evt.value
    row = evt.index[0]

    post_id = cached_latest_posts_df.iloc[row]["post_id"]
    return post_id


def load_video(url):
    post_id = get_reddit_id(url)
    video_url = f"https://huggingface.co/datasets/asgaardlab/GamePhysicsDailyDump/resolve/main/data/videos/{post_id}.mp4?download=true"

    # make sure file exists before returning, make a request without downloading the file
    r = requests.head(video_url)
    if r.status_code != 200 and r.status_code != 302:
        raise gr.Error(
            f"Video is not in the repo, please try another post. - {r.status_code  }"
        )

    return video_url


with gr.Blocks() as demo:
    gr.Markdown("## Preview GamePhysics")
    dummt_title = gr.Textbox(visible=False)

    with gr.Row():
        with gr.Column():
            reddit_id = gr.Textbox(
                lines=1, placeholder="Post url or id here", label="URL or Post ID"
            )
            load_btn = gr.Button("Load")
            video_player = gr.Video(interactive=False)

            with gr.Column():
                gr.Markdown("## Sampled Frames from Video")
                num_frames = gr.Slider(minimum=1, maximum=60, step=1, value=10)
                sample_decord_btn = gr.Button("Sample decord")

                sampled_frames = gr.Gallery()

                download_samples_btn = gr.Button("Download Samples")
                output_files = gr.File()

                download_samples_btn.click(
                    download_samples,
                    inputs=[reddit_id, video_player, num_frames],
                    outputs=[output_files],
                )

        with gr.Column():
            gr.Markdown("## Latest Posts")
            with gr.Accordion("Latest Posts"):
                latest_post_dataframe = gr.Dataframe()
                latest_posts_btn = gr.Button("Refresh Latest Posts")
            with gr.Accordion("Top Posts"):
                top_posts_dataframe = gr.Dataframe()
                top_posts_btn = gr.Button("Refresh Top Posts")

    sample_decord_btn.click(
        extract_frames_decord,
        inputs=[video_player, num_frames],
        outputs=[sampled_frames],
    )

    load_btn.click(load_video, inputs=[reddit_id], outputs=[video_player])

    latest_posts_btn.click(get_latest_posts, outputs=[latest_post_dataframe])
    top_posts_btn.click(get_top_posts, outputs=[top_posts_dataframe])

    demo.load(get_latest_posts, outputs=[latest_post_dataframe])
    demo.load(get_top_posts, outputs=[top_posts_dataframe])

    latest_post_dataframe.select(fn=row_selected_latest, outputs=[reddit_id]).then(
        load_video, inputs=[reddit_id], outputs=[video_player]
    )
    top_posts_dataframe.select(fn=row_selected_top, outputs=[reddit_id]).then(
        load_video, inputs=[reddit_id], outputs=[video_player]
    )

    demo.launch()