Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,19 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from fastT5 import export_and_get_onnx_model, get_onnx_model
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
tokenized = tokenizer("Will this work?", return_tensors="pt")
|
8 |
tokens = model.generate(
|
9 |
input_ids=tokenized["input_ids"],
|
10 |
attention_mask=tokenized["attention_mask"],
|
11 |
)
|
12 |
-
|
13 |
st.write(tokenizer.decode(tokens.squeeze(), skip_special_tokens=True))
|
|
|
1 |
+
import subprocess
|
2 |
import streamlit as st
|
3 |
from fastT5 import export_and_get_onnx_model, get_onnx_model
|
4 |
|
5 |
+
p = subprocess.Popen(["pip", "freeze"], stdout=subprocess.PIPE)
|
6 |
+
output = p.communicate()[0]
|
7 |
+
st.code(output.decode("utf-8"))
|
8 |
+
|
9 |
+
MODEL_NAME = "stas/mt5-tiny-random"
|
10 |
+
|
11 |
+
model = export_and_get_onnx_model(MODEL_NAME)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
+
|
14 |
tokenized = tokenizer("Will this work?", return_tensors="pt")
|
15 |
tokens = model.generate(
|
16 |
input_ids=tokenized["input_ids"],
|
17 |
attention_mask=tokenized["attention_mask"],
|
18 |
)
|
|
|
19 |
st.write(tokenizer.decode(tokens.squeeze(), skip_special_tokens=True))
|