|
import streamlit as st
|
|
import torch
|
|
from PIL import Image
|
|
import torchvision.transforms as transforms
|
|
from model import SiameseNetwork
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
model = SiameseNetwork().to(device)
|
|
model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
|
|
model.eval()
|
|
|
|
|
|
transform = transforms.Compose([
|
|
transforms.Resize((100, 100)),
|
|
transforms.Grayscale(num_output_channels=1),
|
|
transforms.ToTensor(),
|
|
])
|
|
|
|
|
|
st.title("Signature Forgery Detection with Siamese Network")
|
|
st.write("Upload two signature images to check if they are from the same person or if one is forged.")
|
|
|
|
|
|
image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "jpeg"])
|
|
image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
|
|
|
|
if image1 and image2:
|
|
|
|
img1 = Image.open(image1).convert("RGB")
|
|
img2 = Image.open(image2).convert("RGB")
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.image(img1, caption='First Signature Image', use_container_width=True)
|
|
with col2:
|
|
st.image(img2, caption='Second Signature Image', use_container_width=True)
|
|
|
|
|
|
img1 = transform(img1).unsqueeze(0).to(device)
|
|
img2 = transform(img2).unsqueeze(0).to(device)
|
|
|
|
|
|
output1, output2 = model(img1, img2)
|
|
euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2)
|
|
|
|
|
|
threshold = 0.5
|
|
|
|
|
|
st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}')
|
|
if euclidean_distance.item() < threshold:
|
|
st.write("The signatures are likely from the **same person**.")
|
|
else:
|
|
st.write("The signatures **do not match**, one might be **forged**.")
|
|
|
|
|