Spaces:
Runtime error
Runtime error
# Last modified: 2024-02-08 | |
# | |
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# If you find this code useful, we kindly ask you to cite our paper in your work. | |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold. | |
# More information about the method can be found at https://marigoldmonodepth.github.io | |
# -------------------------------------------------------------------------- | |
import torch | |
from .base_depth_dataset import BaseDepthDataset, DepthFileNameMode | |
from .kitti_dataset import KITTIDataset | |
class VirtualKITTIDataset(BaseDepthDataset): | |
def __init__( | |
self, | |
kitti_bm_crop, # Crop to KITTI benchmark size | |
valid_mask_crop, # Evaluation mask. [None, garg or eigen] | |
**kwargs, | |
) -> None: | |
super().__init__( | |
# virtual KITTI data parameter | |
min_depth=1e-5, | |
max_depth=80, # 655.35 | |
has_filled_depth=False, | |
name_mode=DepthFileNameMode.id, | |
**kwargs, | |
) | |
self.kitti_bm_crop = kitti_bm_crop | |
self.valid_mask_crop = valid_mask_crop | |
assert self.valid_mask_crop in [ | |
None, | |
"garg", # set evaluation mask according to Garg ECCV16 | |
"eigen", # set evaluation mask according to Eigen NIPS14 | |
], f"Unknown crop type: {self.valid_mask_crop}" | |
# Filter out empty depth | |
self.filenames = [f for f in self.filenames if "None" != f[1]] | |
def _read_depth_file(self, rel_path): | |
depth_in = self._read_image(rel_path) | |
# Decode vKITTI depth | |
depth_decoded = depth_in / 100.0 | |
return depth_decoded | |
def _load_rgb_data(self, rgb_rel_path): | |
rgb_data = super()._load_rgb_data(rgb_rel_path) | |
if self.kitti_bm_crop: | |
rgb_data = { | |
k: KITTIDataset.kitti_benchmark_crop(v) for k, v in rgb_data.items() | |
} | |
return rgb_data | |
def _load_depth_data(self, depth_rel_path, filled_rel_path): | |
depth_data = super()._load_depth_data(depth_rel_path, filled_rel_path) | |
if self.kitti_bm_crop: | |
depth_data = { | |
k: KITTIDataset.kitti_benchmark_crop(v) for k, v in depth_data.items() | |
} | |
return depth_data | |
def _get_valid_mask(self, depth: torch.Tensor): | |
# reference: https://github.com/cleinc/bts/blob/master/pytorch/bts_eval.py | |
valid_mask = super()._get_valid_mask(depth) # [1, H, W] | |
if self.valid_mask_crop is not None: | |
eval_mask = torch.zeros_like(valid_mask.squeeze()).bool() | |
gt_height, gt_width = eval_mask.shape | |
if "garg" == self.valid_mask_crop: | |
eval_mask[ | |
int(0.40810811 * gt_height) : int(0.99189189 * gt_height), | |
int(0.03594771 * gt_width) : int(0.96405229 * gt_width), | |
] = 1 | |
elif "eigen" == self.valid_mask_crop: | |
eval_mask[ | |
int(0.3324324 * gt_height) : int(0.91351351 * gt_height), | |
int(0.0359477 * gt_width) : int(0.96405229 * gt_width), | |
] = 1 | |
eval_mask.reshape(valid_mask.shape) | |
valid_mask = torch.logical_and(valid_mask, eval_mask) | |
return valid_mask | |