Spaces:
Runtime error
Runtime error
# Last modified: 2024-02-26 | |
# | |
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# If you find this code useful, we kindly ask you to cite our paper in your work. | |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold. | |
# More information about the method can be found at https://marigoldmonodepth.github.io | |
# -------------------------------------------------------------------------- | |
import os | |
import tarfile | |
from io import BytesIO | |
import numpy as np | |
import torch | |
from .base_depth_dataset import BaseDepthDataset, DepthFileNameMode, DatasetMode | |
class DIODEDataset(BaseDepthDataset): | |
def __init__( | |
self, | |
**kwargs, | |
) -> None: | |
super().__init__( | |
# DIODE data parameter | |
min_depth=0.6, | |
max_depth=350, | |
has_filled_depth=False, | |
name_mode=DepthFileNameMode.id, | |
**kwargs, | |
) | |
def _read_npy_file(self, rel_path): | |
if self.is_tar: | |
if self.tar_obj is None: | |
self.tar_obj = tarfile.open(self.dataset_dir) | |
fileobj = self.tar_obj.extractfile("./" + rel_path) | |
npy_path_or_content = BytesIO(fileobj.read()) | |
else: | |
npy_path_or_content = os.path.join(self.dataset_dir, rel_path) | |
data = np.load(npy_path_or_content).squeeze()[np.newaxis, :, :] | |
return data | |
def _read_depth_file(self, rel_path): | |
depth = self._read_npy_file(rel_path) | |
return depth | |
def _get_data_path(self, index): | |
return self.filenames[index] | |
def _get_data_item(self, index): | |
# Special: depth mask is read from data | |
rgb_rel_path, depth_rel_path, mask_rel_path = self._get_data_path(index=index) | |
rasters = {} | |
# RGB data | |
rasters.update(self._load_rgb_data(rgb_rel_path=rgb_rel_path)) | |
# Depth data | |
if DatasetMode.RGB_ONLY != self.mode: | |
# load data | |
depth_data = self._load_depth_data( | |
depth_rel_path=depth_rel_path, filled_rel_path=None | |
) | |
rasters.update(depth_data) | |
# valid mask | |
mask = self._read_npy_file(mask_rel_path).astype(bool) | |
mask = torch.from_numpy(mask).bool() | |
rasters["valid_mask_raw"] = mask.clone() | |
rasters["valid_mask_filled"] = mask.clone() | |
other = {"index": index, "rgb_relative_path": rgb_rel_path} | |
return rasters, other | |