Spaces:
Runtime error
Runtime error
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved. | |
# Last modified: 2024-05-24 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# If you find this code useful, we kindly ask you to cite our paper in your work. | |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
# More information about the method can be found at https://marigoldmonodepth.github.io | |
# -------------------------------------------------------------------------- | |
import logging | |
from typing import Dict, Optional, Union | |
import numpy as np | |
import torch | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DiffusionPipeline, | |
LCMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils import BaseOutput | |
from PIL import Image | |
from torch.utils.data import DataLoader, TensorDataset | |
from torchvision.transforms import InterpolationMode | |
from torchvision.transforms.functional import pil_to_tensor, resize | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from .util.batchsize import find_batch_size | |
from .util.ensemble import ensemble_depth | |
from .util.image_util import ( | |
chw2hwc, | |
colorize_depth_maps, | |
get_tv_resample_method, | |
resize_max_res, | |
) | |
class MarigoldDepthOutput(BaseOutput): | |
""" | |
Output class for Marigold monocular depth prediction pipeline. | |
Args: | |
depth_np (`np.ndarray`): | |
Predicted depth map, with depth values in the range of [0, 1]. | |
depth_colored (`PIL.Image.Image`): | |
Colorized depth map, with the shape of [3, H, W] and values in [0, 1]. | |
uncertainty (`None` or `np.ndarray`): | |
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling. | |
""" | |
depth_np: np.ndarray | |
depth_colored: Union[None, Image.Image] | |
uncertainty: Union[None, np.ndarray] | |
class MarigoldPipeline(DiffusionPipeline): | |
""" | |
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
unet (`UNet2DConditionModel`): | |
Conditional U-Net to denoise the depth latent, conditioned on image latent. | |
vae (`AutoencoderKL`): | |
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps | |
to and from latent representations. | |
scheduler (`DDIMScheduler`): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
text_encoder (`CLIPTextModel`): | |
Text-encoder, for empty text embedding. | |
tokenizer (`CLIPTokenizer`): | |
CLIP tokenizer. | |
scale_invariant (`bool`, *optional*): | |
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in | |
the model config. When used together with the `shift_invariant=True` flag, the model is also called | |
"affine-invariant". NB: overriding this value is not supported. | |
shift_invariant (`bool`, *optional*): | |
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in | |
the model config. When used together with the `scale_invariant=True` flag, the model is also called | |
"affine-invariant". NB: overriding this value is not supported. | |
default_denoising_steps (`int`, *optional*): | |
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable | |
quality with the given model. This value must be set in the model config. When the pipeline is called | |
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure | |
reasonable results with various model flavors compatible with the pipeline, such as those relying on very | |
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`). | |
default_processing_resolution (`int`, *optional*): | |
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in | |
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the | |
default value is used. This is required to ensure reasonable results with various model flavors trained | |
with varying optimal processing resolution values. | |
""" | |
rgb_latent_scale_factor = 0.18215 | |
depth_latent_scale_factor = 0.18215 | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
vae: AutoencoderKL, | |
scheduler: Union[DDIMScheduler, LCMScheduler], | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
scale_invariant: Optional[bool] = True, | |
shift_invariant: Optional[bool] = True, | |
default_denoising_steps: Optional[int] = None, | |
default_processing_resolution: Optional[int] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
vae=vae, | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
) | |
self.register_to_config( | |
scale_invariant=scale_invariant, | |
shift_invariant=shift_invariant, | |
default_denoising_steps=default_denoising_steps, | |
default_processing_resolution=default_processing_resolution, | |
) | |
self.scale_invariant = scale_invariant | |
self.shift_invariant = shift_invariant | |
self.default_denoising_steps = default_denoising_steps | |
self.default_processing_resolution = default_processing_resolution | |
self.empty_text_embed = None | |
def __call__( | |
self, | |
input_image: Union[Image.Image, torch.Tensor], | |
denoising_steps: Optional[int] = None, | |
ensemble_size: int = 5, | |
processing_res: Optional[int] = None, | |
match_input_res: bool = True, | |
resample_method: str = "bilinear", | |
batch_size: int = 0, | |
generator: Union[torch.Generator, None] = None, | |
color_map: str = "Spectral", | |
show_progress_bar: bool = True, | |
ensemble_kwargs: Dict = None, | |
) -> MarigoldDepthOutput: | |
""" | |
Function invoked when calling the pipeline. | |
Args: | |
input_image (`Image`): | |
Input RGB (or gray-scale) image. | |
denoising_steps (`int`, *optional*, defaults to `None`): | |
Number of denoising diffusion steps during inference. The default value `None` results in automatic | |
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4 | |
for Marigold-LCM models. | |
ensemble_size (`int`, *optional*, defaults to `10`): | |
Number of predictions to be ensembled. | |
processing_res (`int`, *optional*, defaults to `None`): | |
Effective processing resolution. When set to `0`, processes at the original image resolution. This | |
produces crisper predictions, but may also lead to the overall loss of global context. The default | |
value `None` resolves to the optimal value from the model config. | |
match_input_res (`bool`, *optional*, defaults to `True`): | |
Resize depth prediction to match input resolution. | |
Only valid if `processing_res` > 0. | |
resample_method: (`str`, *optional*, defaults to `bilinear`): | |
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`. | |
batch_size (`int`, *optional*, defaults to `0`): | |
Inference batch size, no bigger than `num_ensemble`. | |
If set to 0, the script will automatically decide the proper batch size. | |
generator (`torch.Generator`, *optional*, defaults to `None`) | |
Random generator for initial noise generation. | |
show_progress_bar (`bool`, *optional*, defaults to `True`): | |
Display a progress bar of diffusion denoising. | |
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation): | |
Colormap used to colorize the depth map. | |
scale_invariant (`str`, *optional*, defaults to `True`): | |
Flag of scale-invariant prediction, if True, scale will be adjusted from the raw prediction. | |
shift_invariant (`str`, *optional*, defaults to `True`): | |
Flag of shift-invariant prediction, if True, shift will be adjusted from the raw prediction, if False, near plane will be fixed at 0m. | |
ensemble_kwargs (`dict`, *optional*, defaults to `None`): | |
Arguments for detailed ensembling settings. | |
Returns: | |
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including: | |
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1] | |
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None` | |
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation) | |
coming from ensembling. None if `ensemble_size = 1` | |
""" | |
# Model-specific optimal default values leading to fast and reasonable results. | |
if denoising_steps is None: | |
denoising_steps = self.default_denoising_steps | |
if processing_res is None: | |
processing_res = self.default_processing_resolution | |
assert processing_res >= 0 | |
assert ensemble_size >= 1 | |
# Check if denoising step is reasonable | |
self._check_inference_step(denoising_steps) | |
resample_method: InterpolationMode = get_tv_resample_method(resample_method) | |
# ----------------- Image Preprocess ----------------- | |
# Convert to torch tensor | |
if isinstance(input_image, Image.Image): | |
input_image = input_image.convert("RGB") | |
# convert to torch tensor [H, W, rgb] -> [rgb, H, W] | |
rgb = pil_to_tensor(input_image) | |
rgb = rgb.unsqueeze(0) # [1, rgb, H, W] | |
elif isinstance(input_image, torch.Tensor): | |
rgb = input_image | |
else: | |
raise TypeError(f"Unknown input type: {type(input_image) = }") | |
input_size = rgb.shape | |
assert ( | |
4 == rgb.dim() and 3 == input_size[-3] | |
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]" | |
# Resize image | |
if processing_res > 0: | |
rgb = resize_max_res( | |
rgb, | |
max_edge_resolution=processing_res, | |
resample_method=resample_method, | |
) | |
# Normalize rgb values | |
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1] | |
rgb_norm = rgb_norm.to(self.dtype) | |
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0 | |
# ----------------- Predicting depth ----------------- | |
# Batch repeated input image | |
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1) | |
single_rgb_dataset = TensorDataset(duplicated_rgb) | |
if batch_size > 0: | |
_bs = batch_size | |
else: | |
_bs = find_batch_size( | |
ensemble_size=ensemble_size, | |
input_res=max(rgb_norm.shape[1:]), | |
dtype=self.dtype, | |
) | |
single_rgb_loader = DataLoader( | |
single_rgb_dataset, batch_size=_bs, shuffle=False | |
) | |
# Predict depth maps (batched) | |
depth_pred_ls = [] | |
if show_progress_bar: | |
iterable = tqdm( | |
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False | |
) | |
else: | |
iterable = single_rgb_loader | |
for batch in iterable: | |
(batched_img,) = batch | |
depth_pred_raw = self.single_infer( | |
rgb_in=batched_img, | |
num_inference_steps=denoising_steps, | |
show_pbar=show_progress_bar, | |
generator=generator, | |
) | |
depth_pred_ls.append(depth_pred_raw.detach()) | |
depth_preds = torch.concat(depth_pred_ls, dim=0) | |
torch.cuda.empty_cache() # clear vram cache for ensembling | |
# ----------------- Test-time ensembling ----------------- | |
if ensemble_size > 1: | |
depth_pred, pred_uncert = ensemble_depth( | |
depth_preds, | |
scale_invariant=self.scale_invariant, | |
shift_invariant=self.shift_invariant, | |
max_res=50, | |
**(ensemble_kwargs or {}), | |
) | |
else: | |
depth_pred = depth_preds | |
pred_uncert = None | |
# Resize back to original resolution | |
if match_input_res: | |
depth_pred = resize( | |
depth_pred, | |
input_size[-2:], | |
interpolation=resample_method, | |
antialias=True, | |
) | |
# Convert to numpy | |
depth_pred = depth_pred.squeeze() | |
depth_pred = depth_pred.cpu().numpy() | |
if pred_uncert is not None: | |
pred_uncert = pred_uncert.squeeze().cpu().numpy() | |
# Clip output range | |
depth_pred = depth_pred.clip(0, 1) | |
# Colorize | |
if color_map is not None: | |
depth_colored = colorize_depth_maps( | |
depth_pred, 0, 1, cmap=color_map | |
).squeeze() # [3, H, W], value in (0, 1) | |
depth_colored = (depth_colored * 255).astype(np.uint8) | |
depth_colored_hwc = chw2hwc(depth_colored) | |
depth_colored_img = Image.fromarray(depth_colored_hwc) | |
else: | |
depth_colored_img = None | |
return MarigoldDepthOutput( | |
depth_np=depth_pred, | |
depth_colored=depth_colored_img, | |
uncertainty=pred_uncert, | |
) | |
def _check_inference_step(self, n_step: int) -> None: | |
""" | |
Check if denoising step is reasonable | |
Args: | |
n_step (`int`): denoising steps | |
""" | |
assert n_step >= 1 | |
if isinstance(self.scheduler, DDIMScheduler): | |
if n_step < 10: | |
logging.warning( | |
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference." | |
) | |
elif isinstance(self.scheduler, LCMScheduler): | |
if not 1 <= n_step <= 4: | |
logging.warning( | |
f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps." | |
) | |
else: | |
raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}") | |
def encode_empty_text(self): | |
""" | |
Encode text embedding for empty prompt | |
""" | |
prompt = "" | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="do_not_pad", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) | |
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) | |
def single_infer( | |
self, | |
rgb_in: torch.Tensor, | |
num_inference_steps: int, | |
generator: Union[torch.Generator, None], | |
show_pbar: bool, | |
) -> torch.Tensor: | |
""" | |
Perform an individual depth prediction without ensembling. | |
Args: | |
rgb_in (`torch.Tensor`): | |
Input RGB image. | |
num_inference_steps (`int`): | |
Number of diffusion denoisign steps (DDIM) during inference. | |
show_pbar (`bool`): | |
Display a progress bar of diffusion denoising. | |
generator (`torch.Generator`) | |
Random generator for initial noise generation. | |
Returns: | |
`torch.Tensor`: Predicted depth map. | |
""" | |
device = self.device | |
rgb_in = rgb_in.to(device) | |
# Set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps # [T] | |
# Encode image | |
rgb_latent = self.encode_rgb(rgb_in) | |
# Initial depth map (noise) | |
depth_latent = torch.randn( | |
rgb_latent.shape, | |
device=device, | |
dtype=self.dtype, | |
generator=generator, | |
) # [B, 4, h, w] | |
# Batched empty text embedding | |
if self.empty_text_embed is None: | |
self.encode_empty_text() | |
batch_empty_text_embed = self.empty_text_embed.repeat( | |
(rgb_latent.shape[0], 1, 1) | |
).to(device) # [B, 2, 1024] | |
# Denoising loop | |
if show_pbar: | |
iterable = tqdm( | |
enumerate(timesteps), | |
total=len(timesteps), | |
leave=False, | |
desc=" " * 4 + "Diffusion denoising", | |
) | |
else: | |
iterable = enumerate(timesteps) | |
for i, t in iterable: | |
unet_input = torch.cat( | |
[rgb_latent, depth_latent], dim=1 | |
) # this order is important | |
# predict the noise residual | |
noise_pred = self.unet( | |
unet_input, t, encoder_hidden_states=batch_empty_text_embed | |
).sample # [B, 4, h, w] | |
# compute the previous noisy sample x_t -> x_t-1 | |
depth_latent = self.scheduler.step( | |
noise_pred, t, depth_latent, generator=generator | |
).prev_sample | |
depth = self.decode_depth(depth_latent) | |
# clip prediction | |
depth = torch.clip(depth, -1.0, 1.0) | |
# shift to [0, 1] | |
depth = (depth + 1.0) / 2.0 | |
return depth | |
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor: | |
""" | |
Encode RGB image into latent. | |
Args: | |
rgb_in (`torch.Tensor`): | |
Input RGB image to be encoded. | |
Returns: | |
`torch.Tensor`: Image latent. | |
""" | |
# encode | |
h = self.vae.encoder(rgb_in) | |
moments = self.vae.quant_conv(h) | |
mean, logvar = torch.chunk(moments, 2, dim=1) | |
# scale latent | |
rgb_latent = mean * self.rgb_latent_scale_factor | |
return rgb_latent | |
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor: | |
""" | |
Decode depth latent into depth map. | |
Args: | |
depth_latent (`torch.Tensor`): | |
Depth latent to be decoded. | |
Returns: | |
`torch.Tensor`: Decoded depth map. | |
""" | |
# scale latent | |
depth_latent = depth_latent / self.depth_latent_scale_factor | |
# decode | |
z = self.vae.post_quant_conv(depth_latent) | |
stacked = self.vae.decoder(z) | |
# mean of output channels | |
depth_mean = stacked.mean(dim=1, keepdim=True) | |
return depth_mean | |