import spaces import torch import gradio as gr from clip_interrogator import Config, Interrogator config = Config() config.device = 'cuda' if torch.cuda.is_available() else 'cpu' config.blip_offload = False if torch.cuda.is_available() else True config.chunk_size = 2048 config.flavor_intermediate_count = 512 config.blip_num_beams = 64 ci = Interrogator(config) css = """ #col-container { margin: 0 auto; max-width: 580px; } """ @spaces.GPU def infer(image, mode, best_max_flavors): image = image.convert('RGB') if mode == 'best': prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) elif mode == 'classic': prompt_result = ci.interrogate_classic(image) else: prompt_result = ci.interrogate_fast(image) return prompt_result with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# CLIP Interrogator") input_image = gr.Image(type='pil', elem_id="input-img") with gr.Row(): mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best') flavor_input = gr.Slider(minimum=2, maximum=48, step=2, value=32, label='best mode max flavors') run_button = gr.Button("Submit") output_text = gr.Textbox(label="Description Output") run_button.click( fn=infer, inputs=[input_image, mode_input, flavor_input], outputs=[output_text], concurrency_limit=10 ) demo.queue().launch()