\ import pandas as pd import re, unicodedata from html import unescape MIN_LEN = 20 MAX_LEN = 60 KEEP_ASCII_ONLY = False MIN_ALPHA_RATIO = 0.60 DROP_IF_ALL_CAPS = False BUZZY = { "synergy","cutting edge","cutting-edge","best in class","best-in-class", "world class","world-class","state of the art","state-of-the-art", "revolutionary","disruptive platform","next generation","next-gen", "leading provider","scalable solution" } URL_RE = re.compile(r"(https?://|www\.)\S+", re.I) EMAIL_RE = re.compile(r"[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}", re.I) PHONE_RE = re.compile(r"(\+?\d[\d\-\s()]{6,}\d)") WS_RE = re.compile(r"\s+") PUNCT_RE = re.compile(r"[^\w\s]+") TM_RE = re.compile(r"[®️©️™️]") def _nfkc(s): return unicodedata.normalize("NFKC", s) def _clean_text(s: str) -> str: s = "" if s is None else str(s) s = unescape(s) s = _nfkc(s) s = s.replace("\\n"," ").replace("\\r"," ") s = TM_RE.sub("", s) s = WS_RE.sub(" ", s).strip() return s def _alpha_ratio(s: str) -> float: if not s: return 0.0 letters = sum(ch.isalpha() for ch in s) return letters / max(1, len(s)) def _looks_shouty(s: str) -> bool: letters = [ch for ch in s if ch.isalpha()] if not letters: return False uppers = sum(ch.isupper() for ch in letters) return uppers / len(letters) >= 0.85 def _contains_buzzy(s: str) -> bool: lo = s.lower() return any(term in lo for term in BUZZY) def _has_junk(s: str) -> bool: return bool(URL_RE.search(s) or EMAIL_RE.search(s) or PHONE_RE.search(s)) def _ascii_only(s: str) -> bool: try: s.encode("ascii"); return True except Exception: return False def _dupe_key(s: str) -> str: s = s.lower() s = re.sub(r"[^\\w\\s]+", " ", s) s = re.sub(r"\\s+", " ", s).strip() return s def clean_dataframe(df: pd.DataFrame) -> pd.DataFrame: if "tagline" not in df.columns: raise ValueError("Input must contain a 'tagline' column.") df = df.copy() if "description" not in df.columns: df["description"] = df["tagline"] df["tagline"] = df["tagline"].map(_clean_text) df["description"] = df["description"].map(_clean_text) df = df[(df["tagline"].str.len() > 0)] mask_junk = df["tagline"].map(_has_junk) | df["description"].map(_has_junk) df = df[~mask_junk] if KEEP_ASCII_ONLY: df = df[df["tagline"].map(_ascii_only)] df = df[df["tagline"].map(_alpha_ratio) >= MIN_ALPHA_RATIO] df = df[df["tagline"].str.len().between(MIN_LEN, MAX_LEN)] if DROP_IF_ALL_CAPS: df = df[~df["tagline"].map(_looks_shouty)] df = df[~df["tagline"].map(_contains_buzzy)] key = df["tagline"].map(_dupe_key) df = df.loc[~key.duplicated()].reset_index(drop=True) df.loc[df["description"].str.len() == 0, "description"] = df["tagline"] return df