Spaces:
Running
Running
File size: 2,101 Bytes
f2f5171 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from fastapi import FastAPI
from typing import List
from app import Summarizer, Request, Result
from app import EN_SENTIMENT_MODEL, EN_SUMMARY_MODEL, RU_SENTIMENT_MODEL, RU_SUMMARY_MODEL
from app import DEFAULT_EN_TEXT, DEFAULT_RU_TEXT
app = FastAPI()
pipe = Summarizer()
@app.post("/summ_ru", response_model=Result)
async def ru_summ_api(request: Request):
results = pipe.summarize(request.text)
return results
if __name__ == "__main__":
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=2, min_width=600):
en_sum_description=gr.Markdown(value=f"Model for Summary: {EN_SUMMARY_MODEL}")
en_sent_description=gr.Markdown(value=f"Model for Sentiment: {EN_SENTIMENT_MODEL}")
en_inputs=gr.Textbox(label="en_input", lines=5, value=DEFAULT_EN_TEXT, placeholder=DEFAULT_EN_TEXT)
en_lang=gr.Textbox(value='en',visible=False)
en_outputs=gr.Textbox(label="en_output", lines=5, placeholder="Summary and Sentiment would be here...")
en_inbtn = gr.Button("Proceed")
with gr.Column(scale=2, min_width=600):
ru_sum_description=gr.Markdown(value=f"Model for Summary: {RU_SUMMARY_MODEL}")
ru_sent_description=gr.Markdown(value=f"Model for Sentiment: {RU_SENTIMENT_MODEL}")
ru_inputs=gr.Textbox(label="ru_input", lines=5, value=DEFAULT_RU_TEXT, placeholder=DEFAULT_RU_TEXT)
ru_lang=gr.Textbox(value='ru',visible=False)
ru_outputs=gr.Textbox(label="ru_output", lines=5, placeholder="Здесь будет обобщение и эмоциональный окрас текста...")
ru_inbtn = gr.Button("Запустить")
en_inbtn.click(
pipe.summarize.to_str(),
[en_inputs, en_lang],
[en_outputs],
)
ru_inbtn.click(
pipe.summarize.to_str(),
[ru_inputs, ru_lang],
[ru_outputs],
)
demo.launch(show_api=False) |