Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the summarization model pipeline
|
5 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
6 |
+
|
7 |
+
# Define the function to handle dynamic chunking of text
|
8 |
+
def summarize_text(text):
|
9 |
+
# Calculate dynamic chunk size (for example, we assume a max chunk of 1024 characters)
|
10 |
+
max_chunk_size = 1024 # Can be adjusted based on model's token limit (often 1024-2048 tokens)
|
11 |
+
|
12 |
+
# Split the text into chunks if it's longer than the max chunk size
|
13 |
+
text_chunks = []
|
14 |
+
if len(text) > max_chunk_size:
|
15 |
+
# Calculate chunk size dynamically based on input length
|
16 |
+
chunk_size = max_chunk_size if len(text) > max_chunk_size else len(text)
|
17 |
+
text_chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
18 |
+
else:
|
19 |
+
# If the text is small enough, use it as one chunk
|
20 |
+
text_chunks = [text]
|
21 |
+
|
22 |
+
# Summarize each chunk
|
23 |
+
summaries = [summarizer(chunk)[0]['summary_text'] for chunk in text_chunks]
|
24 |
+
|
25 |
+
# Combine all summaries into one
|
26 |
+
full_summary = " ".join(summaries)
|
27 |
+
return full_summary
|
28 |
+
|
29 |
+
# Set up the Gradio interface
|
30 |
+
interface = gr.Interface(fn=summarize_text,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title="Text Summarizer",
|
34 |
+
description="Enter long text to get a detailed summarized version.")
|
35 |
+
|
36 |
+
# Launch the Gradio interface
|
37 |
+
interface.launch(share=True)
|