aryan79's picture
Update app.py
8ae7ecd verified
raw
history blame
6.25 kB
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import os
from groq import Groq
import creds # Assuming creds.py holds your API key as creds.api_key
# Step 1: Scrape the free courses from Analytics Vidhya
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
courses = []
# Extracting course title, image, and course link
for course_card in soup.find_all('header', class_='course-card__img-container'):
img_tag = course_card.find('img', class_='course-card__img')
if img_tag:
title = img_tag.get('alt')
image_url = img_tag.get('src')
link_tag = course_card.find_previous('a')
if link_tag:
course_link = link_tag.get('href')
if not course_link.startswith('http'):
course_link = 'https://courses.analyticsvidhya.com' + course_link
courses.append({
'title': title,
'image_url': image_url,
'course_link': course_link
})
# Step 2: Create DataFrame
df = pd.DataFrame(courses)
# Step 3: Initialize the Groq client and set the API key
client = Groq(api_key=creds.api_key)
def search_courses(query):
try:
# Prepare the prompt for Groq
prompt = f"""Given the following query: "{query}"
Please analyze the query and rank the following courses based on their relevance to the query.
Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course.
Only return courses with a relevance score of 0.5 or higher.
Return the results in the following format:
Title: [Course Title]
Relevance: [Score]
Courses:
{df['title'].to_string(index=False)}
"""
# Get response from Groq
response = client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[{"role": "system", "content": "You are an AI assistant specialized in course recommendations."},
{"role": "user", "content": prompt}],
temperature=0.2,
max_tokens=1000
)
# Parse Groq's response
results = []
for line in response.choices[0].message.content.split('\n'):
if line.startswith('Title:'):
title = line.split('Title:')[1].strip()
elif line.startswith('Relevance:'):
relevance = float(line.split('Relevance:')[1].strip())
if relevance >= 0.5:
matching_courses = df[df['title'] == title]
if not matching_courses.empty:
course = matching_courses.iloc[0]
results.append({
'title': title,
'image_url': course['image_url'],
'course_link': course['course_link'],
'score': relevance
})
return sorted(results, key=lambda x: x['score'], reverse=True)[:10]
except Exception as e:
return []
def gradio_search(query):
result_list = search_courses(query)
if result_list:
html_output = '<div class="results-container">'
for item in result_list:
course_title = item['title']
course_image = item['image_url']
course_link = item['course_link']
relevance_score = round(item['score'] * 100, 2)
html_output += f'''
<div class="course-card">
<img src="{course_image}" alt="{course_title}" class="course-image"/>
<div class="course-info">
<h3>{course_title}</h3>
<p>Relevance: {relevance_score}%</p>
<a href="{course_link}" target="_blank" class="course-link">View Course</a>
</div>
</div>'''
html_output += '</div>'
return html_output
else:
return '<p class="no-results">No results found. Please try a different query.</p>'
# Dark-themed CSS
custom_css = """
body {
font-family: Arial, sans-serif;
background-color: #121212; /* Dark background */
color: #E0E0E0; /* Light text color for dark background */
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
color: #E0E0E0;
}
.results-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
}
.course-card {
background-color: #1E1E1E; /* Darker card background */
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.5);
margin-bottom: 20px;
overflow: hidden;
width: 48%;
transition: transform 0.2s;
}
.course-card:hover {
transform: translateY(-5px);
}
.course-image {
width: 100%;
height: 150px;
object-fit: cover;
}
.course-info {
padding: 15px;
}
.course-info h3 {
margin-top: 0;
font-size: 18px;
color: #E0E0E0; /* Light text color */
}
.course-info p {
color: #B0B0B0; /* Slightly darker text color for contrast */
font-size: 14px;
margin-bottom: 10px;
}
.course-link {
display: inline-block;
background-color: #007bff;
color: white;
padding: 8px 12px;
text-decoration: none;
border-radius: 4px;
font-size: 14px;
transition: background-color 0.2s;
}
.course-link:hover {
background-color: #0056b3;
}
.no-results {
text-align: center;
color: #B0B0B0;
font-style: italic;
}
"""
# Gradio interface
iface = gr.Interface(
fn=gradio_search,
inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"),
outputs=gr.HTML(label="Search Results"),
title="Analytics Vidhya Smart Course Search",
description="Find the most relevant courses from Analytics Vidhya based on your query.",
theme="huggingface",
css=custom_css,
examples=[
["machine learning for beginners"],
["advanced data visualization techniques"],
["python programming basics"],
["Business Analytics"]
],
)
if __name__ == "__main__":
iface.launch()