import os import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel, Field from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig # Set a writable cache directory os.environ["HF_HOME"] = "/tmp/huggingface" os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" # Model setup MODEL_NAME = "google/gemma-2b" # Smaller, CPU-friendly model DEVICE = "cpu" # 4-bit Quantization for CPU quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True ) # Load model & tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, quantization_config=quantization_config, device_map="cpu" ) # Set generation config model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME) model.generation_config.pad_token_id = model.generation_config.eos_token_id # FastAPI app app = FastAPI() # Request payload class TextGenerationRequest(BaseModel): prompt: str max_tokens: int = Field(default=100, ge=1, le=512) # Prevent too large token requests @app.post("/generate") async def generate_text(request: TextGenerationRequest): try: inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE) outputs = model.generate(**inputs, max_new_tokens=request.max_tokens, do_sample=True) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": result} except Exception as e: raise HTTPException(status_code=500, detail=str(e))