import os # Set a writable cache directory os.environ["HF_HOME"] = "/tmp/huggingface" os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" # Now import the required libraries import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # Model setup MODEL_NAME = "deepseek-ai/deepseek-llm-7b-base" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto" ) model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME) model.generation_config.pad_token_id = model.generation_config.eos_token_id # FastAPI app app = FastAPI() # Request payload class TextGenerationRequest(BaseModel): prompt: str max_tokens: int = 100 @app.post("/generate") async def generate_text(request: TextGenerationRequest): try: inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE) outputs = model.generate(**inputs, max_new_tokens=request.max_tokens) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": result} except Exception as e: raise HTTPException(status_code=500, detail=str(e))