deepseek-7b / app.py
arya-ai-model's picture
First commit
a983f3b
raw
history blame
1.38 kB
import os
# Set a writable cache directory
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
# Now import the required libraries
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
# Model setup
MODEL_NAME = "deepseek-ai/deepseek-llm-7b-base"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto"
)
model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
# FastAPI app
app = FastAPI()
# Request payload
class TextGenerationRequest(BaseModel):
prompt: str
max_tokens: int = 100
@app.post("/generate")
async def generate_text(request: TextGenerationRequest):
try:
inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(**inputs, max_new_tokens=request.max_tokens)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"generated_text": result}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))