Spaces:
Runtime error
Runtime error
import os | |
# Set a writable cache directory | |
os.environ["HF_HOME"] = "/tmp/huggingface" | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
# Now import the required libraries | |
import torch | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | |
# Model setup | |
MODEL_NAME = "deepseek-ai/deepseek-llm-7b-base" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto" | |
) | |
model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME) | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
# FastAPI app | |
app = FastAPI() | |
# Request payload | |
class TextGenerationRequest(BaseModel): | |
prompt: str | |
max_tokens: int = 100 | |
async def generate_text(request: TextGenerationRequest): | |
try: | |
inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE) | |
outputs = model.generate(**inputs, max_new_tokens=request.max_tokens) | |
result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return {"generated_text": result} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |