File size: 1,200 Bytes
102a3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

# Model setup
MODEL_NAME = "deepseek-ai/deepseek-llm-7b-base"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto"
)
model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

# FastAPI app
app = FastAPI()

# Request payload
class TextGenerationRequest(BaseModel):
    prompt: str
    max_tokens: int = 100

@app.post("/generate")
async def generate_text(request: TextGenerationRequest):
    try:
        inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE)
        outputs = model.generate(**inputs, max_new_tokens=request.max_tokens)
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {"generated_text": result}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))