import os from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL_NAME = "bigcode/starcoderbase-1b" HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Force CPU mode device = "cpu" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) # Ensure the tokenizer has a pad token set if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, token=HF_TOKEN, torch_dtype=torch.float32, # Change to float32 for CPU compatibility trust_remote_code=True ).to(device) # Explicitly move to CPU def generate_code(prompt: str, max_tokens: int = 256): inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device) output = model.generate(**inputs, max_new_tokens=max_tokens, pad_token_id=tokenizer.pad_token_id) return tokenizer.decode(output[0], skip_special_tokens=True)