Spaces:
Sleeping
Sleeping
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Correct model name | |
MODEL_NAME = "bigcode/starcoder" | |
# Ensure the token is provided | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
if not HF_TOKEN: | |
raise ValueError("Missing Hugging Face token. Set HUGGINGFACE_TOKEN as an environment variable.") | |
# Load tokenizer and model with authentication | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HF_TOKEN, device_map="auto") | |
def generate_code(prompt: str, max_tokens: int = 256): | |
"""Generates code based on the input prompt.""" | |
if not prompt.strip(): | |
return "Error: Empty prompt provided." | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
output = model.generate(**inputs, max_new_tokens=max_tokens) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |