Spaces:
Sleeping
Sleeping
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
MODEL_NAME = "bigcode/starcoderbase-1b" | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
# Force CPU mode | |
device = "cpu" | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) | |
# Ensure the tokenizer has a pad token set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
token=HF_TOKEN, | |
torch_dtype=torch.float32, # Use float32 for CPU | |
trust_remote_code=True | |
).to(device) # Move model explicitly to CPU | |
def generate_code(prompt: str, max_tokens: int = 256): | |
inputs = tokenizer( | |
prompt, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, # Allow truncation | |
max_length=1024 # Set a maximum length explicitly | |
).to(device) | |
output = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |