Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the pre-trained model | |
MODEL_NAME = "bigcode/starcoder" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto") | |
def generate_code(prompt: str, max_tokens: int = 256): | |
"""Generates code based on the input prompt.""" | |
if not prompt.strip(): | |
return "Error: Empty prompt provided." | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
output = model.generate(**inputs, max_new_tokens=max_tokens) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |