Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,22 +6,40 @@ import os, stat
|
|
| 6 |
import uuid
|
| 7 |
from googletrans import Translator
|
| 8 |
from TTS.api import TTS
|
|
|
|
| 9 |
from faster_whisper import WhisperModel
|
|
|
|
| 10 |
import soundfile as sf
|
|
|
|
| 11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 12 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from huggingface_hub import HfApi
|
| 14 |
-
import shlex
|
| 15 |
|
|
|
|
| 16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 17 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 18 |
api = HfApi(token=HF_TOKEN)
|
| 19 |
repo_id = "artificialguybr/video-dubbing"
|
| 20 |
|
| 21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
model_size = "small"
|
| 23 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
def check_for_faces(video_path):
|
| 26 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 27 |
cap = cv2.VideoCapture(video_path)
|
|
@@ -39,6 +57,17 @@ def check_for_faces(video_path):
|
|
| 39 |
|
| 40 |
return False
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
@spaces.GPU
|
| 43 |
def process_video(radio, video, target_language, has_closeup_face):
|
| 44 |
if target_language is None:
|
|
@@ -46,37 +75,33 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
| 46 |
|
| 47 |
run_uuid = uuid.uuid4().hex[:6]
|
| 48 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
| 49 |
-
|
| 50 |
-
# Use subprocess for ffmpeg operations
|
| 51 |
-
subprocess.run(["ffmpeg", "-i", video, "-vf", "scale=-2:720", output_filename])
|
| 52 |
|
| 53 |
video_path = output_filename
|
| 54 |
|
| 55 |
if not os.path.exists(video_path):
|
| 56 |
return f"Error: {video_path} does not exist."
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
video_duration = float(video_info)
|
| 61 |
|
| 62 |
if video_duration > 60:
|
| 63 |
os.remove(video_path)
|
| 64 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
print("Attempting to transcribe with Whisper...")
|
| 71 |
try:
|
| 72 |
-
|
| 73 |
-
whisper_text = " ".join(segment.text for segment in segments)
|
| 74 |
-
whisper_language = info.language
|
| 75 |
print(f"Transcription successful: {whisper_text}")
|
| 76 |
except RuntimeError as e:
|
| 77 |
print(f"RuntimeError encountered: {str(e)}")
|
| 78 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
| 79 |
-
gr.Warning("Error. Space
|
| 80 |
api.restart_space(repo_id=repo_id)
|
| 81 |
|
| 82 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
|
@@ -85,19 +110,20 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
| 85 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
| 86 |
print(translated_text)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
| 90 |
|
| 91 |
if has_closeup_face:
|
| 92 |
try:
|
| 93 |
-
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '
|
| 94 |
subprocess.run(cmd, shell=True, check=True)
|
| 95 |
except subprocess.CalledProcessError as e:
|
| 96 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
| 97 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
| 98 |
-
|
|
|
|
| 99 |
else:
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
| 103 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
|
@@ -109,7 +135,7 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
| 109 |
f"{run_uuid}_resized_video.mp4",
|
| 110 |
f"{run_uuid}_output_audio.wav",
|
| 111 |
f"{run_uuid}_output_audio_final.wav",
|
| 112 |
-
|
| 113 |
]
|
| 114 |
for file in files_to_delete:
|
| 115 |
try:
|
|
@@ -120,11 +146,9 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
| 120 |
return output_video_path
|
| 121 |
|
| 122 |
def swap(radio):
|
| 123 |
-
if
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
return gr.update(source="webcam")
|
| 127 |
-
|
| 128 |
video = gr.Video()
|
| 129 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
| 130 |
iface = gr.Interface(
|
|
@@ -133,10 +157,7 @@ iface = gr.Interface(
|
|
| 133 |
radio,
|
| 134 |
video,
|
| 135 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
| 136 |
-
gr.Checkbox(
|
| 137 |
-
label="Video has a close-up face. Use Wav2lip.",
|
| 138 |
-
value=False,
|
| 139 |
-
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
|
| 140 |
],
|
| 141 |
outputs=gr.Video(),
|
| 142 |
live=False,
|
|
@@ -159,5 +180,5 @@ with gr.Blocks() as demo:
|
|
| 159 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
| 160 |
""")
|
| 161 |
|
| 162 |
-
demo.queue()
|
| 163 |
demo.launch()
|
|
|
|
| 6 |
import uuid
|
| 7 |
from googletrans import Translator
|
| 8 |
from TTS.api import TTS
|
| 9 |
+
import ffmpeg
|
| 10 |
from faster_whisper import WhisperModel
|
| 11 |
+
from scipy.signal import wiener
|
| 12 |
import soundfile as sf
|
| 13 |
+
from pydub import AudioSegment
|
| 14 |
import numpy as np
|
| 15 |
+
import librosa
|
| 16 |
+
from zipfile import ZipFile
|
| 17 |
+
import shlex
|
| 18 |
import cv2
|
| 19 |
+
import torch
|
| 20 |
+
import torchvision
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
from numba import jit
|
| 23 |
from huggingface_hub import HfApi
|
|
|
|
| 24 |
|
| 25 |
+
# Environment setup
|
| 26 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 27 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 28 |
api = HfApi(token=HF_TOKEN)
|
| 29 |
repo_id = "artificialguybr/video-dubbing"
|
| 30 |
|
| 31 |
+
# Extract ffmpeg
|
| 32 |
+
ZipFile("ffmpeg.zip").extractall()
|
| 33 |
+
st = os.stat('ffmpeg')
|
| 34 |
+
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
| 35 |
+
|
| 36 |
+
# Initialize Whisper model
|
| 37 |
model_size = "small"
|
| 38 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
| 39 |
|
| 40 |
+
# Initialize TTS model
|
| 41 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
| 42 |
+
|
| 43 |
def check_for_faces(video_path):
|
| 44 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 45 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
| 57 |
|
| 58 |
return False
|
| 59 |
|
| 60 |
+
@spaces.GPU
|
| 61 |
+
def transcribe_audio(audio_path):
|
| 62 |
+
segments, info = model.transcribe(audio_path, beam_size=5)
|
| 63 |
+
whisper_text = " ".join(segment.text for segment in segments)
|
| 64 |
+
whisper_language = info.language
|
| 65 |
+
return whisper_text, whisper_language
|
| 66 |
+
|
| 67 |
+
@spaces.GPU
|
| 68 |
+
def generate_tts(text, speaker_wav, language_code):
|
| 69 |
+
tts.tts_to_file(text, speaker_wav=speaker_wav, file_path="output_synth.wav", language=language_code)
|
| 70 |
+
|
| 71 |
@spaces.GPU
|
| 72 |
def process_video(radio, video, target_language, has_closeup_face):
|
| 73 |
if target_language is None:
|
|
|
|
| 75 |
|
| 76 |
run_uuid = uuid.uuid4().hex[:6]
|
| 77 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
| 78 |
+
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run()
|
|
|
|
|
|
|
| 79 |
|
| 80 |
video_path = output_filename
|
| 81 |
|
| 82 |
if not os.path.exists(video_path):
|
| 83 |
return f"Error: {video_path} does not exist."
|
| 84 |
|
| 85 |
+
video_info = ffmpeg.probe(video_path)
|
| 86 |
+
video_duration = float(video_info['streams'][0]['duration'])
|
|
|
|
| 87 |
|
| 88 |
if video_duration > 60:
|
| 89 |
os.remove(video_path)
|
| 90 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
| 91 |
|
| 92 |
+
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run()
|
| 93 |
|
| 94 |
+
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
|
| 95 |
+
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
|
| 96 |
|
| 97 |
print("Attempting to transcribe with Whisper...")
|
| 98 |
try:
|
| 99 |
+
whisper_text, whisper_language = transcribe_audio(f"{run_uuid}_output_audio_final.wav")
|
|
|
|
|
|
|
| 100 |
print(f"Transcription successful: {whisper_text}")
|
| 101 |
except RuntimeError as e:
|
| 102 |
print(f"RuntimeError encountered: {str(e)}")
|
| 103 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
| 104 |
+
gr.Warning("Error. Space needs to restart. Please retry in a minute")
|
| 105 |
api.restart_space(repo_id=repo_id)
|
| 106 |
|
| 107 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
|
|
|
| 110 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
| 111 |
print(translated_text)
|
| 112 |
|
| 113 |
+
generate_tts(translated_text, f"{run_uuid}_output_audio_final.wav", target_language_code)
|
|
|
|
| 114 |
|
| 115 |
if has_closeup_face:
|
| 116 |
try:
|
| 117 |
+
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio 'output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
|
| 118 |
subprocess.run(cmd, shell=True, check=True)
|
| 119 |
except subprocess.CalledProcessError as e:
|
| 120 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
| 121 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
| 122 |
+
cmd = f"ffmpeg -i {video_path} -i output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
|
| 123 |
+
subprocess.run(cmd, shell=True)
|
| 124 |
else:
|
| 125 |
+
cmd = f"ffmpeg -i {video_path} -i output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
|
| 126 |
+
subprocess.run(cmd, shell=True)
|
| 127 |
|
| 128 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
| 129 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
|
|
|
| 135 |
f"{run_uuid}_resized_video.mp4",
|
| 136 |
f"{run_uuid}_output_audio.wav",
|
| 137 |
f"{run_uuid}_output_audio_final.wav",
|
| 138 |
+
"output_synth.wav"
|
| 139 |
]
|
| 140 |
for file in files_to_delete:
|
| 141 |
try:
|
|
|
|
| 146 |
return output_video_path
|
| 147 |
|
| 148 |
def swap(radio):
|
| 149 |
+
return gr.update(source="upload" if radio == "Upload" else "webcam")
|
| 150 |
+
|
| 151 |
+
# Gradio interface setup
|
|
|
|
|
|
|
| 152 |
video = gr.Video()
|
| 153 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
| 154 |
iface = gr.Interface(
|
|
|
|
| 157 |
radio,
|
| 158 |
video,
|
| 159 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
| 160 |
+
gr.Checkbox(label="Video has a close-up face. Use Wav2lip.", value=False, info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
|
|
|
|
|
|
|
|
|
|
| 161 |
],
|
| 162 |
outputs=gr.Video(),
|
| 163 |
live=False,
|
|
|
|
| 180 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
| 181 |
""")
|
| 182 |
|
| 183 |
+
demo.queue(concurrency_count=1, max_size=15)
|
| 184 |
demo.launch()
|