Spaces:
Runtime error
Runtime error
File size: 4,702 Bytes
07b8c5e d4f55c7 53c8204 07b8c5e 9c246bf af35943 9c246bf d226d4e d4f55c7 07b8c5e d4f55c7 07b8c5e d4f55c7 404edfc d4f55c7 404edfc d4f55c7 404edfc d4f55c7 404edfc 07b8c5e d4f55c7 07b8c5e 404edfc af35943 404edfc af35943 d4f55c7 07b8c5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
import requests
import io
from PIL import Image
import json
from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white
import logging
class SomeClass:
def __init__(self):
self.images = []
with open('loras.json', 'r') as f:
loras = json.load(f)
def update_selection(selected_state: gr.SelectData):
logging.debug(f"Inside update_selection, selected_state: {selected_state}")
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
selected_state
)
def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
selected_lora_index = selected_state.index
selected_lora = loras[selected_lora_index]
api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
payload = {"inputs": f"{prompt} {selected_lora['trigger_word']}", "parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"}}
response = requests.post(api_url, json=payload)
if response.status_code == 200:
original_image = Image.open(io.BytesIO(response.content))
processed = SomeClass()
processed.images = [original_image]
refined_image = processed.images[-1]
return original_image, refined_image
def apply_post_processing(image, downscale, limit_colors, grayscale, black_and_white):
processed_image = image.copy()
if downscale > 1:
processed_image = downscale_image(processed_image, downscale)
if limit_colors:
processed_image = limit_colors(processed_image)
if grayscale:
processed_image = convert_to_grayscale(processed_image)
if black_and_white:
processed_image = convert_to_black_and_white(processed_image)
return processed_image
with gr.Blocks() as app:
title = gr.Markdown("# artificialguybr LoRA portfolio")
description = gr.Markdown("### This is a Pixel Art Generator using SD Loras.")
selected_state = gr.State()
with gr.Row():
gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=3)
with gr.Column():
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it")
selected_info = gr.Markdown("")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
button = gr.Button("Run")
result = gr.Image(interactive=False, label="Generated Image")
refined_result = gr.Image(interactive=False, label="Refined Generated Image")
post_processed_result = gr.Image(interactive=False, label="Post-Processed Image")
with gr.Tabs():
with gr.TabItem("Color"):
enable_color_limit = gr.Checkbox(label="Enable", value=False)
number_of_colors = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
with gr.TabItem("Grayscale"):
is_grayscale = gr.Checkbox(label="Enable", value=False)
number_of_shades = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
with gr.TabItem("Black and white"):
is_black_and_white = gr.Checkbox(label="Enable", value=False)
black_and_white_threshold = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128)
with gr.TabItem("Custom color palette"):
use_color_palette = gr.Checkbox(label="Enable", value=False)
palette_image = gr.Image(label="Color palette image", type="pil")
palette_colors = gr.Slider(label="Palette Size (only for complex images)", minimum=1, maximum=256, step=1, value=16)
post_process_button = gr.Button("Apply Post-Processing")
gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result, refined_result])
post_process_button.click(fn=apply_post_processing, inputs=[refined_result, downscale, limit_colors, grayscale, black_and_white], outputs=[post_processed_result])
app.queue(max_size=20, concurrency_count=5)
app.launch()
|