Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,30 +3,45 @@ import torchaudio
|
|
3 |
from audiocraft.models import MusicGen
|
4 |
from audiocraft.data.audio import audio_write
|
5 |
import spaces
|
|
|
|
|
|
|
|
|
6 |
|
7 |
@spaces.GPU(duration=120)
|
8 |
-
@spaces.GPU(duration=120)
|
9 |
def generate_music(description, melody_audio):
|
|
|
10 |
|
|
|
|
|
11 |
model = MusicGen.get_pretrained('nateraw/musicgen-songstarter-v0.2')
|
12 |
-
model.set_generation_params(duration=8)
|
13 |
|
14 |
if description:
|
15 |
description = [description]
|
16 |
if melody_audio:
|
|
|
17 |
melody, sr = torchaudio.load(melody_audio)
|
18 |
-
|
|
|
19 |
else:
|
20 |
-
|
|
|
21 |
else:
|
22 |
-
|
|
|
23 |
|
24 |
output_path = 'output.wav'
|
|
|
25 |
audio_write(output_path, wav[0].cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
|
26 |
|
27 |
-
|
|
|
|
|
28 |
|
|
|
29 |
|
|
|
30 |
description = gr.Textbox(label="Description", placeholder="acoustic, guitar, melody, trap, d minor, 90 bpm")
|
31 |
melody_audio = gr.Audio(label="Melody Audio (optional)", type="filepath")
|
32 |
output_path = gr.Audio(label="Generated Music", type="filepath")
|
|
|
3 |
from audiocraft.models import MusicGen
|
4 |
from audiocraft.data.audio import audio_write
|
5 |
import spaces
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Configura o logging
|
9 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
|
11 |
@spaces.GPU(duration=120)
|
|
|
12 |
def generate_music(description, melody_audio):
|
13 |
+
logging.info("Iniciando a geração de música.")
|
14 |
|
15 |
+
# Carrega o modelo pré-treinado
|
16 |
+
logging.info("Carregando o modelo pré-treinado.")
|
17 |
model = MusicGen.get_pretrained('nateraw/musicgen-songstarter-v0.2')
|
18 |
+
model.set_generation_params(duration=8)
|
19 |
|
20 |
if description:
|
21 |
description = [description]
|
22 |
if melody_audio:
|
23 |
+
logging.info(f"Carregando a melodia de áudio de: {melody_audio}")
|
24 |
melody, sr = torchaudio.load(melody_audio)
|
25 |
+
logging.info("Gerando música com descrição e melodia.")
|
26 |
+
wav = model.generate_with_chroma(description, melody[None], sr)
|
27 |
else:
|
28 |
+
logging.info("Gerando música apenas com descrição.")
|
29 |
+
wav = model.generate(description)
|
30 |
else:
|
31 |
+
logging.info("Gerando música de forma incondicional.")
|
32 |
+
wav = model.generate_unconditional(1)
|
33 |
|
34 |
output_path = 'output.wav'
|
35 |
+
logging.info(f"Salvando a música gerada em: {output_path}")
|
36 |
audio_write(output_path, wav[0].cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
|
37 |
|
38 |
+
# Verifica a forma do tensor de áudio e se foi salvo corretamente
|
39 |
+
logging.info(f"A forma do tensor de áudio gerado: {wav[0].shape}")
|
40 |
+
logging.info("Música gerada e salva com sucesso.")
|
41 |
|
42 |
+
return output_path
|
43 |
|
44 |
+
# Define a interface Gradio
|
45 |
description = gr.Textbox(label="Description", placeholder="acoustic, guitar, melody, trap, d minor, 90 bpm")
|
46 |
melody_audio = gr.Audio(label="Melody Audio (optional)", type="filepath")
|
47 |
output_path = gr.Audio(label="Generated Music", type="filepath")
|