import gradio as gr import openai import json from graphviz import Digraph from PIL import Image import io import requests from bs4 import BeautifulSoup from ast import literal_eval # Function to scrape text from a website def scrape_text_from_url(url): response = requests.get(url) if response.status_code != 200: return "Error: Could not retrieve content from URL." soup = BeautifulSoup(response.text, "html.parser") paragraphs = soup.find_all("p") text = " ".join([p.get_text() for p in paragraphs]) return text def generate_knowledge_graph(api_key, user_input): openai.api_key = api_key # Check if input is URL or text if user_input.startswith("http://") or user_input.startswith("https://"): user_input = scrape_text_from_url(user_input) # Chamar a API da OpenAI completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "user", "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}", } ], functions=[ { "name": "knowledge_graph", "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.", "parameters": { "type": "object", "properties": { "metadata": { "type": "object", "properties": { "createdDate": {"type": "string"}, "lastUpdated": {"type": "string"}, "description": {"type": "string"}, }, }, "nodes": { "type": "array", "items": { "type": "object", "properties": { "id": {"type": "string"}, "label": {"type": "string"}, "type": {"type": "string"}, "color": {"type": "string"}, # Added color property "properties": { "type": "object", "description": "Additional attributes for the node", }, }, "required": [ "id", "label", "type", "color", ], # Added color to required }, }, "edges": { "type": "array", "items": { "type": "object", "properties": { "from": {"type": "string"}, "to": {"type": "string"}, "relationship": {"type": "string"}, "direction": {"type": "string"}, "color": {"type": "string"}, # Added color property "properties": { "type": "object", "description": "Additional attributes for the edge", }, }, "required": [ "from", "to", "relationship", "color", ], # Added color to required }, }, }, "required": ["nodes", "edges"], }, } ], function_call={"name": "knowledge_graph"}, ) response_data = completion.choices[0]["message"]["function_call"]["arguments"] try: if isinstance(response_data, str): response_data = literal_eval(response_data) except (ValueError, SyntaxError) as e: print(f"Error in decoding JSON or literal_eval: {e}") return "Error in decoding JSON" if not isinstance(response_data, dict): print("Unexpected data type for response_data") return "Error: Unexpected data type" dot = Digraph(comment="Knowledge Graph", format='png') dot.attr(dpi='300') dot.attr(bgcolor='white') dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black') for node in response_data.get("nodes", []): dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue")) dot.attr('edge', color='black', fontcolor='black') for edge in response_data.get("edges", []): dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black")) image_data = dot.pipe() image = Image.open(io.BytesIO(image_data)) return image title_and_description = """ # Instagraph - Knowledge Graph Generator Created by [@artificialguybr](https://twitter.com/artificialguybr) Code by [Instagraph on GitHub](https://github.com/yoheinakajima/instagraph) Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you. ## Features - **URL**: You can now input a URL to scrape text for generating the knowledge graph. - **Security**: Rest assured, the code is open for your inspection in the files. There's no risk in using your OpenAI API key here. - **Best View**: For the best visualization, consider downloading the generated image. - **Flexible Input**: You can either type what you want the API to generate as a graph or use a URL for this purpose. Feel free to explore and generate your own knowledge graphs! """ with gr.Blocks() as app: gr.Markdown(title_and_description) with gr.Row(): with gr.Column(): result_image = gr.Image(type="pil", label="Generated Knowledge Graph") with gr.Row(): with gr.Column(): api_key = gr.Textbox(label="OpenAI API Key", type="password") user_input = gr.Textbox(label="User Input for Graph or URL", type="text") run_btn = gr.Button("Generate") run_btn.click( generate_knowledge_graph, inputs=[api_key, user_input], outputs=[result_image] ) app.queue(concurrency_count=10) print("Iniciando a interface Gradio...") app.launch()