import gradio as gr import openai import json from graphviz import Digraph from PIL import Image import io import requests from bs4 import BeautifulSoup # Function to generate a knowledge graph from text def generate_knowledge_graph_from_text(api_key, user_input): # Ensure the API key and user input are provided if not api_key or not user_input: raise ValueError("Please provide both the OpenAI API Key and User Input") # Process user input response_data = process_user_input(api_key, user_input) return generate_knowledge_graph(response_data) # Function to generate a knowledge graph from a URL def generate_knowledge_graph_from_url(api_key, url): # Ensure the API key and URL are provided if not api_key or not url: raise ValueError("Please provide both the OpenAI API Key and a URL") # Scrape text from the provided URL text = scrape_text_from_url(url) # Process the scraped text response_data = process_user_input(api_key, text) return generate_knowledge_graph(response_data) # Function to process user input and call OpenAI API def process_user_input(api_key, user_input): openai.api_key = api_key # Call the OpenAI API completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "user", "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}", } ], functions=[ { "name": "knowledge_graph", "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.", "parameters": { "type": "object", "properties": { "metadata": { "type": "object", "properties": { "createdDate": {"type": "string"}, "lastUpdated": {"type": "string"}, "description": {"type": "string"}, }, }, "nodes": { "type": "array", "items": { "type": "object", "properties": { "id": {"type": "string"}, "label": {"type": "string"}, "type": {"type": "string"}, "color": {"type": "string"}, # Added color property "properties": { "type": "object", "description": "Additional attributes for the node", }, }, "required": [ "id", "label", "type", "color", ], # Added color to required }, }, "edges": { "type": "array", "items": { "type": "object", "properties": { "from": {"type": "string"}, "to": {"type": "string"}, "relationship": {"type": "string"}, "direction": {"type": "string"}, "color": {"type": "string"}, # Added color property "properties": { "type": "object", "description": "Additional attributes for the edge", }, }, "required": [ "from", "to", "relationship", "color", ], # Added color to required }, }, }, "required": ["nodes", "edges"], }, } ], function_call={"name": "knowledge_graph"}, ) response_data = completion.choices[0]["message"]["function_call"]["arguments"] return response_data # Function to generate a knowledge graph from response data def generate_knowledge_graph(response_data): # Visualizar o conhecimento usando Graphviz dot = Digraph(comment="Knowledge Graph", format='png') dot.attr(dpi='300') dot.attr(bgcolor='white') # Set background color to white # Estilizar os nós dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black') for node in response_data.get("nodes", []): dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue")) # Estilizar as arestas dot.attr('edge', color='black', fontcolor='black') for edge in response_data.get("edges", []): dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black")) # Renderizar para o formato PNG image_data = dot.pipe() image = Image.open(io.BytesIO(image_data)) return image # Function to scrape text from a website def scrape_text_from_url(url): response = requests.get(url) if response.status_code != 200: return "Error: Could not retrieve content from URL." soup = BeautifulSoup(response.text, "html.parser") paragraphs = soup.find_all("p") text = " ".join([p.get_text() for p in paragraphs]) return text # Define a title and description for the Gradio interface using Markdown title_and_description = """ # Instagraph - Knowledge Graph Generator **Created by [ArtificialGuyBR](https://twitter.com/ArtificialGuyBR)** This interactive knowledge graph generator allows you to input either text or a URL. If you provide text, it will generate a knowledge graph based on the text you provide. If you provide a URL, it will scrape the content from the webpage and generate a knowledge graph from that. To get started, enter your OpenAI API Key and either your text or a URL. """ # Create the Gradio interface with queueing enabled and concurrency_count set to 10 iface = gr.Interface( fn=generate_knowledge_graph_from_text, inputs=[ gr.inputs.Textbox(label="OpenAI API Key", type="password"), gr.inputs.Textbox(label="Text or URL", type="text"), ], outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"), live=False, title=title_and_description, ) # Enable queueing system for multiple users iface.queue(concurrency_count=10) print("Iniciando a interface Gradio...") iface.launch()