artificialguybr's picture
Update app.py
b44dadb
raw
history blame
6.56 kB
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup
# Function to scrape text from a website
def scrape_text_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return "Error: Could not retrieve content from URL."
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
text = " ".join([p.get_text() for p in paragraphs])
return text
def generate_knowledge_graph(api_key, user_input):
openai.api_key = api_key
# Check if input is URL or text
if user_input.startswith("http://") or user_input.startswith("https://"):
user_input = scrape_text_from_url(user_input)
# Chamar a API da OpenAI
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "user",
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
}
],
functions=[
{
"name": "knowledge_graph",
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
"parameters": {
"type": "object",
"properties": {
"metadata": {
"type": "object",
"properties": {
"createdDate": {"type": "string"},
"lastUpdated": {"type": "string"},
"description": {"type": "string"},
},
},
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "string"},
"label": {"type": "string"},
"type": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the node",
},
},
"required": [
"id",
"label",
"type",
"color",
], # Added color to required
},
},
"edges": {
"type": "array",
"items": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"relationship": {"type": "string"},
"direction": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the edge",
},
},
"required": [
"from",
"to",
"relationship",
"color",
], # Added color to required
},
},
},
"required": ["nodes", "edges"],
},
}
],
function_call={"name": "knowledge_graph"},
)
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
# Convert to dictionary if it's a string
if isinstance(response_data, str):
response_data = json.loads(response_data)
# Visualizar o conhecimento usando Graphviz
dot = Digraph(comment="Knowledge Graph", format='png')
dot.attr(dpi='300')
dot.attr(bgcolor='white')
# Estilizar os nós
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
for node in response_data.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
# Estilizar as arestas
dot.attr('edge', color='black', fontcolor='black')
for edge in response_data.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
# Renderizar para o formato PNG
image_data = dot.pipe()
image = Image.open(io.BytesIO(image_data))
return image
# Define a title and description for the Gradio interface using Markdown
title_and_description = """
# Instagraph - Knowledge Graph Generator
Enter your OpenAI API Key and a question, and let the AI create a detailed knowledge graph for you.
**New Feature:** You can now input a URL to scrape text for generating the knowledge graph. Rest assured, the code is open for your inspection to ensure safety.
"""
with gr.Blocks() as app:
gr.Markdown(title_and_description)
with gr.Row():
with gr.Column():
result_image = gr.Image(type="pil", label="Generated Knowledge Graph")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(label="OpenAI API Key", type="password")
user_input = gr.Textbox(label="User Input for Graph or URL", type="text")
run_btn = gr.Button("Generate")
run_btn.click(
generate_knowledge_graph,
inputs=[api_key, user_input],
outputs=[result_image]
)
# Enable queueing system for multiple users
app.queue(concurrency_count=10)
print("Iniciando a interface Gradio...")
app.launch()