Spaces:
Sleeping
Sleeping
File size: 2,336 Bytes
8ea927a 410031a 8ea927a 410031a b79f8d4 8ea927a 410031a b79f8d4 8ea927a b79f8d4 410031a b79f8d4 410031a b79f8d4 410031a b79f8d4 410031a b79f8d4 410031a 8ea927a 410031a 8ea927a b79f8d4 410031a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import openai
import json
from graphviz import Digraph
import base64
from io import BytesIO
from PIL import Image
def generate_knowledge_graph(api_key, user_input):
print("Setting OpenAI API key...")
openai.api_key = api_key
print("Making API call to OpenAI...")
completion = openai.Completion.create(
engine="text-davinci-002",
prompt=f"Help me understand the following by describing it as a detailed knowledge graph: {user_input}",
max_tokens=100
)
print("Received response from OpenAI.")
response_data = completion.choices[0].text
print(f"Response data: {response_data}")
# For demonstration, let's assume the response_data is a JSON string that can be converted to a dictionary.
# You'll need to write code to interpret the text-based response to generate this dictionary.
print("Converting response to JSON...")
try:
response_dict = json.loads(response_data)
except json.JSONDecodeError:
print("Failed to decode JSON. Using empty dictionary as a fallback.")
response_dict = {}
print("Generating knowledge graph using Graphviz...")
dot = Digraph(comment="Knowledge Graph")
# Add nodes to the graph
for node in response_dict.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})")
# Add edges to the graph
for edge in response_dict.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"])
# Render to PNG format
print("Rendering graph to PNG format...")
dot.format = "png"
dot.render(filename="knowledge_graph", cleanup=True)
# Convert PNG to base64 to display in Gradio
print("Converting PNG to base64...")
with open("knowledge_graph.png", "rb") as img_file:
img_base64 = base64.b64encode(img_file.read()).decode()
print("Returning base64 image to Gradio interface.")
return f"data:image/png;base64,{img_base64}"
iface = gr.Interface(
fn=generate_knowledge_graph,
inputs=[
gr.inputs.Textbox(label="OpenAI API Key", type="password"),
gr.inputs.Textbox(label="Text to Generate Knowledge Graph")
],
outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
live=False
)
print("Launching Gradio interface...")
iface.launch()
|