File size: 5,524 Bytes
8ea927a
 
410031a
 
41813c2
 
8ea927a
410031a
8ea927a
410031a
77f6b05
2fce835
e6f14fa
b31a1e4
 
 
 
 
ae1288e
9ec289c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31a1e4
ae1288e
 
8ea927a
ae1288e
 
9ec289c
55d8c0e
 
2fce835
55d8c0e
 
 
a4b8ea3
77f6b05
2fce835
a4b8ea3
 
 
 
 
 
 
77f6b05
9ec289c
a4b8ea3
 
 
 
77f6b05
9ec289c
410031a
77f6b05
2fce835
a4b8ea3
41813c2
410031a
2fce835
 
41813c2
8ea927a
 
9ec289c
410031a
9ec289c
 
 
4cc95b5
9ec289c
8ea927a
 
2fce835
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io

def generate_knowledge_graph(api_key, user_input):
    openai.api_key = api_key

    # Chamar a API da OpenAI
    print("Chamando a API da OpenAI...")
    completion = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-16k",
        messages=[
            {
                "role": "user",
                "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
            }
        ],
        functions=[
            {
                "name": "knowledge_graph",
                "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "metadata": {
                            "type": "object",
                            "properties": {
                                "createdDate": {"type": "string"},
                                "lastUpdated": {"type": "string"},
                                "description": {"type": "string"},
                            },
                        },
                        "nodes": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "id": {"type": "string"},
                                    "label": {"type": "string"},
                                    "type": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the node",
                                    },
                                },
                                "required": [
                                    "id",
                                    "label",
                                    "type",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                        "edges": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "from": {"type": "string"},
                                    "to": {"type": "string"},
                                    "relationship": {"type": "string"},
                                    "direction": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the edge",
                                    },
                                },
                                "required": [
                                    "from",
                                    "to",
                                    "relationship",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                    },
                    "required": ["nodes", "edges"],
                },
            }
        ],
        function_call={"name": "knowledge_graph"},
    )

    response_data = completion.choices[0]["message"]["function_call"]["arguments"]
    print(response_data)
    print("Type of response_data:", type(response_data))
    print("Value of response_data:", response_data)

    # Convert to dictionary if it's a string
    if isinstance(response_data, str):
        response_data = json.loads(response_data)

    # Visualizar o conhecimento usando Graphviz
    print("Gerando o conhecimento usando Graphviz...")
    dot = Digraph(comment="Knowledge Graph", format='png')
    dot.attr(dpi='300')
    dot.attr(bgcolor='transparent')

    # Estilizar os nós
    dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')

    for node in response_data.get("nodes", []):
        dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))

    # Estilizar as arestas
    dot.attr('edge', color='black', fontcolor='black')

    for edge in response_data.get("edges", []):
        dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))

    # Renderizar para o formato PNG
    print("Renderizando o gráfico para o formato PNG...")
    image_data = dot.pipe()
    image = Image.open(io.BytesIO(image_data))

    print("Gráfico gerado com sucesso!")

    return image

iface = gr.Interface(
    fn=generate_knowledge_graph,
    inputs=[
        gr.inputs.Textbox(label="OpenAI API Key", type="password"),
        gr.inputs.Textbox(label="User Input for Graph"),
    ],
    outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
    live=False,
)

print("Iniciando a interface Gradio...")
iface.launch()