Spaces:
Sleeping
Sleeping
File size: 7,354 Bytes
8ea927a 410031a 41813c2 48b792e 8ea927a 48b792e 4f2de6f 48b792e e6f14fa b31a1e4 ae1288e 9ec289c b31a1e4 ae1288e 8ea927a ae1288e 48b792e a4b8ea3 48b792e 77f6b05 a4b8ea3 48b792e a4b8ea3 77f6b05 9ec289c a4b8ea3 77f6b05 9ec289c 410031a 77f6b05 a4b8ea3 41813c2 410031a 41813c2 8ea927a 48b792e 4f2de6f 48b792e 4f2de6f 48b792e 4f2de6f 8ea927a 48b792e 410031a 9ec289c 48b792e 9ec289c 4cc95b5 9ec289c 4f2de6f 8ea927a 4f2de6f 2fce835 4f2de6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup
# Function to generate a knowledge graph from text
def generate_knowledge_graph_from_text(api_key, user_input):
# Ensure the API key and user input are provided
if not api_key or not user_input:
raise ValueError("Please provide both the OpenAI API Key and User Input")
# Process user input
response_data = process_user_input(api_key, user_input)
return generate_knowledge_graph(response_data)
# Function to generate a knowledge graph from a URL
def generate_knowledge_graph_from_url(api_key, url):
# Ensure the API key and URL are provided
if not api_key or not url:
raise ValueError("Please provide both the OpenAI API Key and a URL")
# Scrape text from the provided URL
text = scrape_text_from_url(url)
# Process the scraped text
response_data = process_user_input(api_key, text)
return generate_knowledge_graph(response_data)
# Function to process user input and call OpenAI API
def process_user_input(api_key, user_input):
openai.api_key = api_key
# Call the OpenAI API
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "user",
"content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
}
],
functions=[
{
"name": "knowledge_graph",
"description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
"parameters": {
"type": "object",
"properties": {
"metadata": {
"type": "object",
"properties": {
"createdDate": {"type": "string"},
"lastUpdated": {"type": "string"},
"description": {"type": "string"},
},
},
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {"type": "string"},
"label": {"type": "string"},
"type": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the node",
},
},
"required": [
"id",
"label",
"type",
"color",
], # Added color to required
},
},
"edges": {
"type": "array",
"items": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"relationship": {"type": "string"},
"direction": {"type": "string"},
"color": {"type": "string"}, # Added color property
"properties": {
"type": "object",
"description": "Additional attributes for the edge",
},
},
"required": [
"from",
"to",
"relationship",
"color",
], # Added color to required
},
},
},
"required": ["nodes", "edges"],
},
}
],
function_call={"name": "knowledge_graph"},
)
response_data = completion.choices[0]["message"]["function_call"]["arguments"]
return response_data
# Function to generate a knowledge graph from response data
def generate_knowledge_graph(response_data):
# Visualizar o conhecimento usando Graphviz
dot = Digraph(comment="Knowledge Graph", format='png')
dot.attr(dpi='300')
dot.attr(bgcolor='white') # Set background color to white
# Estilizar os nós
dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')
for node in response_data.get("nodes", []):
dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))
# Estilizar as arestas
dot.attr('edge', color='black', fontcolor='black')
for edge in response_data.get("edges", []):
dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))
# Renderizar para o formato PNG
image_data = dot.pipe()
image = Image.open(io.BytesIO(image_data))
return image
# Function to scrape text from a website
def scrape_text_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return "Error: Could not retrieve content from URL."
soup = BeautifulSoup(response.text, "html.parser")
paragraphs = soup.find_all("p")
text = " ".join([p.get_text() for p in paragraphs])
return text
# Define a title and description for the Gradio interface using Markdown
title_and_description = """
# Instagraph - Knowledge Graph Generator
**Created by [ArtificialGuyBR](https://twitter.com/ArtificialGuyBR)**
This interactive knowledge graph generator allows you to input either text or a URL.
If you provide text, it will generate a knowledge graph based on the text you provide.
If you provide a URL, it will scrape the content from the webpage and generate a knowledge graph from that.
To get started, enter your OpenAI API Key and either your text or a URL.
"""
# Create the Gradio interface with queueing enabled and concurrency_count set to 10
iface = gr.Interface(
fn=generate_knowledge_graph_from_text,
inputs=[
gr.inputs.Textbox(label="OpenAI API Key", type="password"),
gr.inputs.Textbox(label="Text or URL", type="text"),
],
outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
live=False,
title=title_and_description,
)
# Enable queueing system for multiple users
iface.queue(concurrency_count=10)
print("Iniciando a interface Gradio...")
iface.launch()
|