File size: 7,354 Bytes
8ea927a
 
410031a
 
41813c2
 
48b792e
 
8ea927a
48b792e
 
 
4f2de6f
 
 
48b792e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f14fa
b31a1e4
 
 
 
 
ae1288e
9ec289c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31a1e4
ae1288e
 
8ea927a
ae1288e
 
48b792e
a4b8ea3
48b792e
 
77f6b05
a4b8ea3
 
48b792e
a4b8ea3
 
 
 
77f6b05
9ec289c
a4b8ea3
 
 
 
77f6b05
9ec289c
410031a
77f6b05
a4b8ea3
41813c2
410031a
41813c2
8ea927a
48b792e
 
 
 
 
 
 
 
 
 
4f2de6f
 
 
 
 
 
48b792e
 
 
4f2de6f
48b792e
4f2de6f
 
 
8ea927a
48b792e
410031a
9ec289c
48b792e
9ec289c
4cc95b5
9ec289c
4f2de6f
8ea927a
 
4f2de6f
 
 
2fce835
4f2de6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import openai
import json
from graphviz import Digraph
from PIL import Image
import io
import requests
from bs4 import BeautifulSoup

# Function to generate a knowledge graph from text
def generate_knowledge_graph_from_text(api_key, user_input):
    # Ensure the API key and user input are provided
    if not api_key or not user_input:
        raise ValueError("Please provide both the OpenAI API Key and User Input")

    # Process user input
    response_data = process_user_input(api_key, user_input)
    return generate_knowledge_graph(response_data)

# Function to generate a knowledge graph from a URL
def generate_knowledge_graph_from_url(api_key, url):
    # Ensure the API key and URL are provided
    if not api_key or not url:
        raise ValueError("Please provide both the OpenAI API Key and a URL")

    # Scrape text from the provided URL
    text = scrape_text_from_url(url)

    # Process the scraped text
    response_data = process_user_input(api_key, text)
    return generate_knowledge_graph(response_data)

# Function to process user input and call OpenAI API
def process_user_input(api_key, user_input):
    openai.api_key = api_key

    # Call the OpenAI API
    completion = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-16k",
        messages=[
            {
                "role": "user",
                "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
            }
        ],
        functions=[
            {
                "name": "knowledge_graph",
                "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "metadata": {
                            "type": "object",
                            "properties": {
                                "createdDate": {"type": "string"},
                                "lastUpdated": {"type": "string"},
                                "description": {"type": "string"},
                            },
                        },
                        "nodes": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "id": {"type": "string"},
                                    "label": {"type": "string"},
                                    "type": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the node",
                                    },
                                },
                                "required": [
                                    "id",
                                    "label",
                                    "type",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                        "edges": {
                            "type": "array",
                            "items": {
                                "type": "object",
                                "properties": {
                                    "from": {"type": "string"},
                                    "to": {"type": "string"},
                                    "relationship": {"type": "string"},
                                    "direction": {"type": "string"},
                                    "color": {"type": "string"},  # Added color property
                                    "properties": {
                                        "type": "object",
                                        "description": "Additional attributes for the edge",
                                    },
                                },
                                "required": [
                                    "from",
                                    "to",
                                    "relationship",
                                    "color",
                                ],  # Added color to required
                            },
                        },
                    },
                    "required": ["nodes", "edges"],
                },
            }
        ],
        function_call={"name": "knowledge_graph"},
    )

    response_data = completion.choices[0]["message"]["function_call"]["arguments"]
    return response_data

# Function to generate a knowledge graph from response data
def generate_knowledge_graph(response_data):
    # Visualizar o conhecimento usando Graphviz
    dot = Digraph(comment="Knowledge Graph", format='png')
    dot.attr(dpi='300')
    dot.attr(bgcolor='white')  # Set background color to white

    # Estilizar os nós
    dot.attr('node', shape='box', style='filled', fillcolor='lightblue', fontcolor='black')

    for node in response_data.get("nodes", []):
        dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue"))

    # Estilizar as arestas
    dot.attr('edge', color='black', fontcolor='black')

    for edge in response_data.get("edges", []):
        dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black"))

    # Renderizar para o formato PNG
    image_data = dot.pipe()
    image = Image.open(io.BytesIO(image_data))

    return image

# Function to scrape text from a website
def scrape_text_from_url(url):
    response = requests.get(url)
    if response.status_code != 200:
        return "Error: Could not retrieve content from URL."
    soup = BeautifulSoup(response.text, "html.parser")
    paragraphs = soup.find_all("p")
    text = " ".join([p.get_text() for p in paragraphs])
    return text

# Define a title and description for the Gradio interface using Markdown
title_and_description = """
# Instagraph - Knowledge Graph Generator

**Created by [ArtificialGuyBR](https://twitter.com/ArtificialGuyBR)**

This interactive knowledge graph generator allows you to input either text or a URL. 
If you provide text, it will generate a knowledge graph based on the text you provide. 
If you provide a URL, it will scrape the content from the webpage and generate a knowledge graph from that.

To get started, enter your OpenAI API Key and either your text or a URL.
"""

# Create the Gradio interface with queueing enabled and concurrency_count set to 10
iface = gr.Interface(
    fn=generate_knowledge_graph_from_text,
    inputs=[
        gr.inputs.Textbox(label="OpenAI API Key", type="password"),
        gr.inputs.Textbox(label="Text or URL", type="text"),
    ],
    outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"),
    live=False,
    title=title_and_description,
)

# Enable queueing system for multiple users
iface.queue(concurrency_count=10)

print("Iniciando a interface Gradio...")
iface.launch()