File size: 3,859 Bytes
dddb041
 
b8a701a
b46e87b
 
 
 
dddb041
b46e87b
dddb041
 
 
b46e87b
 
 
 
 
223f8b4
a166abf
a146eda
 
a166abf
3733cf2
ccde57b
 
b46e87b
a146eda
ccde57b
b8a701a
b46e87b
 
0347515
b46e87b
a146eda
b46e87b
0347515
b46e87b
0347515
db08793
b46e87b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a146eda
b46e87b
 
 
 
322db57
bf71179
b46e87b
 
 
 
 
9f29ad9
b46e87b
9f29ad9
b46e87b
538d554
057bc07
 
 
 
 
 
b46e87b
057bc07
 
b46e87b
 
 
 
a200bb2
b46e87b
 
 
 
 
 
 
c133494
b46e87b
 
 
057bc07
b46e87b
057bc07
 
c03b3ba
b46e87b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import json
import logging
import torch
from PIL import Image
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler
import spaces

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")

def update_selection(selected_state: gr.SelectData):
    selected_lora_index = selected_state.index
    selected_lora = loras[selected_lora_index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        selected_state
    )

@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_state, scheduler):
    if not selected_state:
        raise gr.Error("You must select a LoRA before proceeding.")

    selected_lora_index = selected_state.index
    selected_lora = loras[selected_lora_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]

    # Load LoRA weights
    pipe.load_lora_weights(lora_path)

    # Set scheduler
    if scheduler == "Euler":
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    elif scheduler == "DPM++ 2M":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

    # Generate image
    image = pipe(
        prompt=f"{prompt} {trigger_word}",
        negative_prompt=negative_prompt,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
    ).images[0]

    # Unload LoRA weights
    pipe.unload_lora_weights()

    return image

with gr.Blocks(css="custom.css") as app:
    gr.Markdown("# artificialguybr LoRA portfolio")
    gr.Markdown(
        "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
        "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
        "Special thanks to Hugging Face for their Diffusers library and Spaces platform."
    )

    selected_state = gr.State()

    with gr.Row():
        gallery = gr.Gallery(
            [(item["image"], item["title"]) for item in loras],
            label="LoRA Gallery",
            allow_preview=False,
            columns=3
        )

        with gr.Column():
            prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
            selected_info = gr.Markdown("")
            prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
            negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
            
            with gr.Row():
                cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
            
            scheduler = gr.Dropdown(label="Scheduler", choices=["Euler", "DPM++ 2M"], value="Euler")
            
            generate_button = gr.Button("Generate")
            result = gr.Image(label="Generated Image")

    gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
    
    generate_button.click(
        fn=run_lora,
        inputs=[prompt, negative_prompt, cfg_scale, steps, selected_state, scheduler],
        outputs=[result]
    )

app.queue()
app.launch()