Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,330 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import numpy as np
import torch
import random
from torchvision.datasets.folder import default_loader
from diffusion.data.datasets.InternalData import InternalData, InternalDataSigma
from diffusion.data.builder import get_data_path, DATASETS
from diffusion.utils.logger import get_root_logger
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from diffusion.data.datasets.utils import *
def get_closest_ratio(height: float, width: float, ratios: dict):
aspect_ratio = height / width
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
return ratios[closest_ratio], float(closest_ratio)
@DATASETS.register_module()
class InternalDataMS(InternalData):
def __init__(self,
root,
image_list_json='data_info.json',
transform=None,
resolution=256,
sample_subset=None,
load_vae_feat=False,
input_size=32,
patch_size=2,
mask_ratio=0.0,
mask_type='null',
load_mask_index=False,
real_prompt_ratio=1.0,
max_length=120,
config=None,
**kwargs):
self.root = get_data_path(root)
self.transform = transform
self.load_vae_feat = load_vae_feat
self.ori_imgs_nums = 0
self.resolution = resolution
self.N = int(resolution // (input_size // patch_size))
self.mask_ratio = mask_ratio
self.load_mask_index = load_mask_index
self.mask_type = mask_type
self.real_prompt_ratio = real_prompt_ratio
self.max_lenth = max_length
self.base_size = int(kwargs['aspect_ratio_type'].split('_')[-1])
self.aspect_ratio = eval(kwargs.pop('aspect_ratio_type')) # base aspect ratio
self.meta_data_clean = []
self.img_samples = []
self.txt_feat_samples = []
self.vae_feat_samples = []
self.mask_index_samples = []
self.ratio_index = {}
self.ratio_nums = {}
# self.weight_dtype = torch.float16 if self.real_prompt_ratio > 0 else torch.float32
for k, v in self.aspect_ratio.items():
self.ratio_index[float(k)] = [] # used for self.getitem
self.ratio_nums[float(k)] = 0 # used for batch-sampler
image_list_json = image_list_json if isinstance(image_list_json, list) else [image_list_json]
for json_file in image_list_json:
meta_data = self.load_json(os.path.join(self.root, json_file))
self.ori_imgs_nums += len(meta_data)
meta_data_clean = [item for item in meta_data if item['ratio'] <= 4]
self.meta_data_clean.extend(meta_data_clean)
self.img_samples.extend([os.path.join(self.root.replace('InternData', "InternImgs"), item['path']) for item in meta_data_clean])
self.txt_feat_samples.extend([os.path.join(self.root, 'caption_features', '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npz')) for item in meta_data_clean])
self.vae_feat_samples.extend([os.path.join(self.root, f'img_vae_fatures_{resolution}_multiscale/ms', '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npy')) for item in meta_data_clean])
# Set loader and extensions
if load_vae_feat:
self.transform = None
self.loader = self.vae_feat_loader
else:
self.loader = default_loader
if sample_subset is not None:
self.sample_subset(sample_subset) # sample dataset for local debug
# scan the dataset for ratio static
for i, info in enumerate(self.meta_data_clean[:len(self.meta_data_clean)//3]):
ori_h, ori_w = info['height'], info['width']
closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
self.ratio_nums[closest_ratio] += 1
if len(self.ratio_index[closest_ratio]) == 0:
self.ratio_index[closest_ratio].append(i)
# print(self.ratio_nums)
logger = get_root_logger() if config is None else get_root_logger(os.path.join(config.work_dir, 'train_log.log'))
logger.info(f"T5 max token length: {self.max_lenth}")
def getdata(self, index):
img_path = self.img_samples[index]
npz_path = self.txt_feat_samples[index]
npy_path = self.vae_feat_samples[index]
ori_h, ori_w = self.meta_data_clean[index]['height'], self.meta_data_clean[index]['width']
# Calculate the closest aspect ratio and resize & crop image[w, h]
closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
closest_size = list(map(lambda x: int(x), closest_size))
self.closest_ratio = closest_ratio
if self.load_vae_feat:
try:
img = self.loader(npy_path)
if index not in self.ratio_index[closest_ratio]:
self.ratio_index[closest_ratio].append(index)
except Exception:
index = random.choice(self.ratio_index[closest_ratio])
return self.getdata(index)
h, w = (img.shape[1], img.shape[2])
assert h, w == (ori_h//8, ori_w//8)
else:
img = self.loader(img_path)
h, w = (img.size[1], img.size[0])
assert h, w == (ori_h, ori_w)
data_info = {'img_hw': torch.tensor([ori_h, ori_w], dtype=torch.float32)}
data_info['aspect_ratio'] = closest_ratio
data_info["mask_type"] = self.mask_type
txt_info = np.load(npz_path)
txt_fea = torch.from_numpy(txt_info['caption_feature'])
attention_mask = torch.ones(1, 1, txt_fea.shape[1])
if 'attention_mask' in txt_info.keys():
attention_mask = torch.from_numpy(txt_info['attention_mask'])[None]
if not self.load_vae_feat:
if closest_size[0] / ori_h > closest_size[1] / ori_w:
resize_size = closest_size[0], int(ori_w * closest_size[0] / ori_h)
else:
resize_size = int(ori_h * closest_size[1] / ori_w), closest_size[1]
self.transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize(resize_size, interpolation=InterpolationMode.BICUBIC), # Image.BICUBIC
T.CenterCrop(closest_size),
T.ToTensor(),
T.Normalize([.5], [.5]),
])
if self.transform:
img = self.transform(img)
return img, txt_fea, attention_mask, data_info
def __getitem__(self, idx):
for _ in range(20):
try:
return self.getdata(idx)
except Exception as e:
print(f"Error details: {str(e)}")
idx = random.choice(self.ratio_index[self.closest_ratio])
raise RuntimeError('Too many bad data.')
@DATASETS.register_module()
class InternalDataMSSigma(InternalDataSigma):
def __init__(self,
root,
image_list_json='data_info.json',
transform=None,
resolution=256,
sample_subset=None,
load_vae_feat=False,
load_t5_feat=False,
input_size=32,
patch_size=2,
mask_ratio=0.0,
mask_type='null',
load_mask_index=False,
real_prompt_ratio=1.0,
max_length=300,
config=None,
**kwargs):
self.root = get_data_path(root)
self.transform = transform
self.load_vae_feat = load_vae_feat
self.load_t5_feat = load_t5_feat
self.ori_imgs_nums = 0
self.resolution = resolution
self.N = int(resolution // (input_size // patch_size))
self.mask_ratio = mask_ratio
self.load_mask_index = load_mask_index
self.mask_type = mask_type
self.real_prompt_ratio = real_prompt_ratio
self.max_lenth = max_length
self.base_size = int(kwargs['aspect_ratio_type'].split('_')[-1])
self.aspect_ratio = eval(kwargs.pop('aspect_ratio_type')) # base aspect ratio
self.meta_data_clean = []
self.img_samples = []
self.txt_samples = []
self.sharegpt4v_txt_samples = []
self.txt_feat_samples = []
self.vae_feat_samples = []
self.mask_index_samples = []
self.ratio_index = {}
self.ratio_nums = {}
self.gpt4v_txt_feat_samples = []
self.weight_dtype = torch.float16 if self.real_prompt_ratio > 0 else torch.float32
self.interpolate_model = InterpolationMode.BICUBIC
if self.aspect_ratio in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]:
self.interpolate_model = InterpolationMode.LANCZOS
suffix = ''
for k, v in self.aspect_ratio.items():
self.ratio_index[float(k)] = [] # used for self.getitem
self.ratio_nums[float(k)] = 0 # used for batch-sampler
logger = get_root_logger() if config is None else get_root_logger(os.path.join(config.work_dir, 'train_log.log'))
logger.info(f"T5 max token length: {self.max_lenth}")
logger.info(f"ratio of real user prompt: {self.real_prompt_ratio}")
image_list_json = image_list_json if isinstance(image_list_json, list) else [image_list_json]
for json_file in image_list_json:
meta_data = self.load_json(os.path.join(self.root, json_file))
logger.info(f"{json_file} data volume: {len(meta_data)}")
self.ori_imgs_nums += len(meta_data)
meta_data_clean = [item for item in meta_data if item['ratio'] <= 4.5]
self.meta_data_clean.extend(meta_data_clean)
self.img_samples.extend([
os.path.join(self.root.replace('InternData'+suffix, 'InternImgs'), item['path']) for item in meta_data_clean
])
self.txt_samples.extend([item['prompt'] for item in meta_data_clean])
self.sharegpt4v_txt_samples.extend([item['sharegpt4v'] if 'sharegpt4v' in item else '' for item in meta_data_clean])
self.txt_feat_samples.extend([
os.path.join(
self.root,
'caption_features_new',
'_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npz')
) for item in meta_data_clean
])
self.gpt4v_txt_feat_samples.extend([
os.path.join(
self.root,
'sharegpt4v_caption_features_new',
'_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npz')
) for item in meta_data_clean
])
self.vae_feat_samples.extend(
[
os.path.join(
self.root + suffix,
f'img_sdxl_vae_features_{resolution}resolution_ms_new',
'_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npy')
) for item in meta_data_clean
])
if self.real_prompt_ratio < 1:
assert len(self.sharegpt4v_txt_samples[0]) != 0
# Set loader and extensions
if load_vae_feat:
self.transform = None
self.loader = self.vae_feat_loader
else:
self.loader = default_loader
if sample_subset is not None:
self.sample_subset(sample_subset) # sample dataset for local debug
# scan the dataset for ratio static
for i, info in enumerate(self.meta_data_clean[:len(self.meta_data_clean)//3]):
ori_h, ori_w = info['height'], info['width']
closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
self.ratio_nums[closest_ratio] += 1
if len(self.ratio_index[closest_ratio]) == 0:
self.ratio_index[closest_ratio].append(i)
def getdata(self, index):
img_path = self.img_samples[index]
real_prompt = random.random() < self.real_prompt_ratio
npz_path = self.txt_feat_samples[index] if real_prompt else self.gpt4v_txt_feat_samples[index]
txt = self.txt_samples[index] if real_prompt else self.sharegpt4v_txt_samples[index]
npy_path = self.vae_feat_samples[index]
data_info = {}
ori_h, ori_w = self.meta_data_clean[index]['height'], self.meta_data_clean[index]['width']
# Calculate the closest aspect ratio and resize & crop image[w, h]
closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
closest_size = list(map(lambda x: int(x), closest_size))
self.closest_ratio = closest_ratio
if self.load_vae_feat:
img = self.loader(npy_path)
if index not in self.ratio_index[closest_ratio]:
self.ratio_index[closest_ratio].append(index)
h, w = (img.shape[1], img.shape[2])
assert h, w == (ori_h//8, ori_w//8)
else:
img = self.loader(img_path)
h, w = (img.size[1], img.size[0])
assert h, w == (ori_h, ori_w)
data_info['img_hw'] = torch.tensor([ori_h, ori_w], dtype=torch.float32)
data_info['aspect_ratio'] = closest_ratio
data_info["mask_type"] = self.mask_type
attention_mask = torch.ones(1, 1, self.max_lenth)
if self.load_t5_feat:
txt_info = np.load(npz_path)
txt_fea = torch.from_numpy(txt_info['caption_feature'])
if 'attention_mask' in txt_info.keys():
attention_mask = torch.from_numpy(txt_info['attention_mask'])[None]
if txt_fea.shape[1] != self.max_lenth:
txt_fea = torch.cat([txt_fea, txt_fea[:, -1:].repeat(1, self.max_lenth-txt_fea.shape[1], 1)], dim=1).to(self.weight_dtype)
attention_mask = torch.cat([attention_mask, torch.zeros(1, 1, self.max_lenth-attention_mask.shape[-1])], dim=-1)
else:
txt_fea = txt
if not self.load_vae_feat:
if closest_size[0] / ori_h > closest_size[1] / ori_w:
resize_size = closest_size[0], int(ori_w * closest_size[0] / ori_h)
else:
resize_size = int(ori_h * closest_size[1] / ori_w), closest_size[1]
self.transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize(resize_size, interpolation=self.interpolate_model), # Image.BICUBIC
T.CenterCrop(closest_size),
T.ToTensor(),
T.Normalize([.5], [.5]),
])
if self.transform:
img = self.transform(img)
return img, txt_fea, attention_mask.to(torch.int16), data_info
def __getitem__(self, idx):
for _ in range(20):
try:
data = self.getdata(idx)
return data
except Exception as e:
print(f"Error details: {str(e)}")
idx = random.choice(self.ratio_index[self.closest_ratio])
raise RuntimeError('Too many bad data.')
|