File size: 15,330 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import numpy as np
import torch
import random
from torchvision.datasets.folder import default_loader
from diffusion.data.datasets.InternalData import InternalData, InternalDataSigma
from diffusion.data.builder import get_data_path, DATASETS
from diffusion.utils.logger import get_root_logger
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from diffusion.data.datasets.utils import *

def get_closest_ratio(height: float, width: float, ratios: dict):
    aspect_ratio = height / width
    closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
    return ratios[closest_ratio], float(closest_ratio)


@DATASETS.register_module()
class InternalDataMS(InternalData):
    def __init__(self,
                 root,
                 image_list_json='data_info.json',
                 transform=None,
                 resolution=256,
                 sample_subset=None,
                 load_vae_feat=False,
                 input_size=32,
                 patch_size=2,
                 mask_ratio=0.0,
                 mask_type='null',
                 load_mask_index=False,
                 real_prompt_ratio=1.0,
                 max_length=120,
                 config=None,
                 **kwargs):
        self.root = get_data_path(root)
        self.transform = transform
        self.load_vae_feat = load_vae_feat
        self.ori_imgs_nums = 0
        self.resolution = resolution
        self.N = int(resolution // (input_size // patch_size))
        self.mask_ratio = mask_ratio
        self.load_mask_index = load_mask_index
        self.mask_type = mask_type
        self.real_prompt_ratio = real_prompt_ratio
        self.max_lenth = max_length
        self.base_size = int(kwargs['aspect_ratio_type'].split('_')[-1])
        self.aspect_ratio = eval(kwargs.pop('aspect_ratio_type'))       # base aspect ratio
        self.meta_data_clean = []
        self.img_samples = []
        self.txt_feat_samples = []
        self.vae_feat_samples = []
        self.mask_index_samples = []
        self.ratio_index = {}
        self.ratio_nums = {}
        # self.weight_dtype = torch.float16 if self.real_prompt_ratio > 0 else torch.float32
        for k, v in self.aspect_ratio.items():
            self.ratio_index[float(k)] = []     # used for self.getitem
            self.ratio_nums[float(k)] = 0      # used for batch-sampler

        image_list_json = image_list_json if isinstance(image_list_json, list) else [image_list_json]
        for json_file in image_list_json:
            meta_data = self.load_json(os.path.join(self.root, json_file))
            self.ori_imgs_nums += len(meta_data)
            meta_data_clean = [item for item in meta_data if item['ratio'] <= 4]
            self.meta_data_clean.extend(meta_data_clean)
            self.img_samples.extend([os.path.join(self.root.replace('InternData', "InternImgs"), item['path']) for item in meta_data_clean])
            self.txt_feat_samples.extend([os.path.join(self.root, 'caption_features', '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npz')) for item in meta_data_clean])
            self.vae_feat_samples.extend([os.path.join(self.root, f'img_vae_fatures_{resolution}_multiscale/ms', '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npy')) for item in meta_data_clean])

        # Set loader and extensions
        if load_vae_feat:
            self.transform = None
            self.loader = self.vae_feat_loader
        else:
            self.loader = default_loader

        if sample_subset is not None:
            self.sample_subset(sample_subset)  # sample dataset for local debug

        # scan the dataset for ratio static
        for i, info in enumerate(self.meta_data_clean[:len(self.meta_data_clean)//3]):
            ori_h, ori_w = info['height'], info['width']
            closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
            self.ratio_nums[closest_ratio] += 1
            if len(self.ratio_index[closest_ratio]) == 0:
                self.ratio_index[closest_ratio].append(i)
        # print(self.ratio_nums)
        logger = get_root_logger() if config is None else get_root_logger(os.path.join(config.work_dir, 'train_log.log'))
        logger.info(f"T5 max token length: {self.max_lenth}")

    def getdata(self, index):
        img_path = self.img_samples[index]
        npz_path = self.txt_feat_samples[index]
        npy_path = self.vae_feat_samples[index]
        ori_h, ori_w = self.meta_data_clean[index]['height'], self.meta_data_clean[index]['width']

        # Calculate the closest aspect ratio and resize & crop image[w, h]
        closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
        closest_size = list(map(lambda x: int(x), closest_size))
        self.closest_ratio = closest_ratio

        if self.load_vae_feat:
            try:
                img = self.loader(npy_path)
                if index not in self.ratio_index[closest_ratio]:
                    self.ratio_index[closest_ratio].append(index)
            except Exception:
                index = random.choice(self.ratio_index[closest_ratio])
                return self.getdata(index)
            h, w = (img.shape[1], img.shape[2])
            assert h, w == (ori_h//8, ori_w//8)
        else:
            img = self.loader(img_path)
            h, w = (img.size[1], img.size[0])
            assert h, w == (ori_h, ori_w)

        data_info = {'img_hw': torch.tensor([ori_h, ori_w], dtype=torch.float32)}
        data_info['aspect_ratio'] = closest_ratio
        data_info["mask_type"] = self.mask_type

        txt_info = np.load(npz_path)
        txt_fea = torch.from_numpy(txt_info['caption_feature'])
        attention_mask = torch.ones(1, 1, txt_fea.shape[1])
        if 'attention_mask' in txt_info.keys():
            attention_mask = torch.from_numpy(txt_info['attention_mask'])[None]

        if not self.load_vae_feat:
            if closest_size[0] / ori_h > closest_size[1] / ori_w:
                resize_size = closest_size[0], int(ori_w * closest_size[0] / ori_h)
            else:
                resize_size = int(ori_h * closest_size[1] / ori_w), closest_size[1]
            self.transform = T.Compose([
                T.Lambda(lambda img: img.convert('RGB')),
                T.Resize(resize_size, interpolation=InterpolationMode.BICUBIC),  # Image.BICUBIC
                T.CenterCrop(closest_size),
                T.ToTensor(),
                T.Normalize([.5], [.5]),
            ])

        if self.transform:
            img = self.transform(img)

        return img, txt_fea, attention_mask, data_info

    def __getitem__(self, idx):
        for _ in range(20):
            try:
                return self.getdata(idx)
            except Exception as e:
                print(f"Error details: {str(e)}")
                idx = random.choice(self.ratio_index[self.closest_ratio])
        raise RuntimeError('Too many bad data.')


@DATASETS.register_module()
class InternalDataMSSigma(InternalDataSigma):
    def __init__(self,
                 root,
                 image_list_json='data_info.json',
                 transform=None,
                 resolution=256,
                 sample_subset=None,
                 load_vae_feat=False,
                 load_t5_feat=False,
                 input_size=32,
                 patch_size=2,
                 mask_ratio=0.0,
                 mask_type='null',
                 load_mask_index=False,
                 real_prompt_ratio=1.0,
                 max_length=300,
                 config=None,
                 **kwargs):
        self.root = get_data_path(root)
        self.transform = transform
        self.load_vae_feat = load_vae_feat
        self.load_t5_feat = load_t5_feat
        self.ori_imgs_nums = 0
        self.resolution = resolution
        self.N = int(resolution // (input_size // patch_size))
        self.mask_ratio = mask_ratio
        self.load_mask_index = load_mask_index
        self.mask_type = mask_type
        self.real_prompt_ratio = real_prompt_ratio
        self.max_lenth = max_length
        self.base_size = int(kwargs['aspect_ratio_type'].split('_')[-1])
        self.aspect_ratio = eval(kwargs.pop('aspect_ratio_type'))       # base aspect ratio
        self.meta_data_clean = []
        self.img_samples = []
        self.txt_samples = []
        self.sharegpt4v_txt_samples = []
        self.txt_feat_samples = []
        self.vae_feat_samples = []
        self.mask_index_samples = []
        self.ratio_index = {}
        self.ratio_nums = {}
        self.gpt4v_txt_feat_samples = []
        self.weight_dtype = torch.float16 if self.real_prompt_ratio > 0 else torch.float32
        self.interpolate_model = InterpolationMode.BICUBIC
        if self.aspect_ratio in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]:
            self.interpolate_model = InterpolationMode.LANCZOS
        suffix = ''
        for k, v in self.aspect_ratio.items():
            self.ratio_index[float(k)] = []     # used for self.getitem
            self.ratio_nums[float(k)] = 0      # used for batch-sampler
        logger = get_root_logger() if config is None else get_root_logger(os.path.join(config.work_dir, 'train_log.log'))
        logger.info(f"T5 max token length: {self.max_lenth}")
        logger.info(f"ratio of real user prompt: {self.real_prompt_ratio}")

        image_list_json = image_list_json if isinstance(image_list_json, list) else [image_list_json]
        for json_file in image_list_json:
            meta_data = self.load_json(os.path.join(self.root, json_file))
            logger.info(f"{json_file} data volume: {len(meta_data)}")
            self.ori_imgs_nums += len(meta_data)
            meta_data_clean = [item for item in meta_data if item['ratio'] <= 4.5]
            self.meta_data_clean.extend(meta_data_clean)
            self.img_samples.extend([
                os.path.join(self.root.replace('InternData'+suffix, 'InternImgs'), item['path']) for item in meta_data_clean
            ])
            self.txt_samples.extend([item['prompt'] for item in meta_data_clean])
            self.sharegpt4v_txt_samples.extend([item['sharegpt4v'] if 'sharegpt4v' in item else '' for item in meta_data_clean])
            self.txt_feat_samples.extend([
                os.path.join(
                    self.root,
                    'caption_features_new',
                    '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npz')
                ) for item in meta_data_clean
            ])
            self.gpt4v_txt_feat_samples.extend([
                os.path.join(
                    self.root,
                    'sharegpt4v_caption_features_new',
                    '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npz')
                ) for item in meta_data_clean
            ])
            self.vae_feat_samples.extend(
                [
                    os.path.join(
                        self.root + suffix,
                        f'img_sdxl_vae_features_{resolution}resolution_ms_new',
                        '_'.join(item['path'].rsplit('/', 1)).replace('.png', '.npy')
                    ) for item in meta_data_clean
                ])

        if self.real_prompt_ratio < 1:
            assert len(self.sharegpt4v_txt_samples[0]) != 0

        # Set loader and extensions
        if load_vae_feat:
            self.transform = None
            self.loader = self.vae_feat_loader
        else:
            self.loader = default_loader

        if sample_subset is not None:
            self.sample_subset(sample_subset)  # sample dataset for local debug

        # scan the dataset for ratio static
        for i, info in enumerate(self.meta_data_clean[:len(self.meta_data_clean)//3]):
            ori_h, ori_w = info['height'], info['width']
            closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
            self.ratio_nums[closest_ratio] += 1
            if len(self.ratio_index[closest_ratio]) == 0:
                self.ratio_index[closest_ratio].append(i)

    def getdata(self, index):
        img_path = self.img_samples[index]
        real_prompt = random.random() < self.real_prompt_ratio
        npz_path = self.txt_feat_samples[index] if real_prompt else self.gpt4v_txt_feat_samples[index]
        txt = self.txt_samples[index] if real_prompt else self.sharegpt4v_txt_samples[index]
        npy_path = self.vae_feat_samples[index]
        data_info = {}
        ori_h, ori_w = self.meta_data_clean[index]['height'], self.meta_data_clean[index]['width']

        # Calculate the closest aspect ratio and resize & crop image[w, h]
        closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
        closest_size = list(map(lambda x: int(x), closest_size))
        self.closest_ratio = closest_ratio

        if self.load_vae_feat:
            img = self.loader(npy_path)
            if index not in self.ratio_index[closest_ratio]:
                self.ratio_index[closest_ratio].append(index)
            h, w = (img.shape[1], img.shape[2])
            assert h, w == (ori_h//8, ori_w//8)
        else:
            img = self.loader(img_path)
            h, w = (img.size[1], img.size[0])
            assert h, w == (ori_h, ori_w)

        data_info['img_hw'] = torch.tensor([ori_h, ori_w], dtype=torch.float32)
        data_info['aspect_ratio'] = closest_ratio
        data_info["mask_type"] = self.mask_type

        attention_mask = torch.ones(1, 1, self.max_lenth)
        if self.load_t5_feat:
            txt_info = np.load(npz_path)
            txt_fea = torch.from_numpy(txt_info['caption_feature'])
            if 'attention_mask' in txt_info.keys():
                attention_mask = torch.from_numpy(txt_info['attention_mask'])[None]
            if txt_fea.shape[1] != self.max_lenth:
                txt_fea = torch.cat([txt_fea, txt_fea[:, -1:].repeat(1, self.max_lenth-txt_fea.shape[1], 1)], dim=1).to(self.weight_dtype)
                attention_mask = torch.cat([attention_mask, torch.zeros(1, 1, self.max_lenth-attention_mask.shape[-1])], dim=-1)
        else:
            txt_fea = txt

        if not self.load_vae_feat:
            if closest_size[0] / ori_h > closest_size[1] / ori_w:
                resize_size = closest_size[0], int(ori_w * closest_size[0] / ori_h)
            else:
                resize_size = int(ori_h * closest_size[1] / ori_w), closest_size[1]
            self.transform = T.Compose([
                T.Lambda(lambda img: img.convert('RGB')),
                T.Resize(resize_size, interpolation=self.interpolate_model),  # Image.BICUBIC
                T.CenterCrop(closest_size),
                T.ToTensor(),
                T.Normalize([.5], [.5]),
            ])

        if self.transform:
            img = self.transform(img)

        return img, txt_fea, attention_mask.to(torch.int16), data_info

    def __getitem__(self, idx):
        for _ in range(20):
            try:
                data = self.getdata(idx)
                return data
            except Exception as e:
                print(f"Error details: {str(e)}")
                idx = random.choice(self.ratio_index[self.closest_ratio])
        raise RuntimeError('Too many bad data.')