|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import gradio as gr |
|
from threading import Thread |
|
|
|
MODEL = "THUDM/LongWriter-glm4-9b" |
|
|
|
TITLE = "<h1><center>LongWriter-glm4-9b</center></h1>" |
|
|
|
PLACEHOLDER = """ |
|
<center> |
|
<p>Hi! I'm LongWriter-glm4-9b, capable of generating 10,000+ words. How can I assist you today?</p> |
|
</center> |
|
""" |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
""" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") |
|
model = model.eval() |
|
|
|
def stream_chat( |
|
message: str, |
|
history: list, |
|
system_prompt: str, |
|
temperature: float = 0.5, |
|
max_new_tokens: int = 32768, |
|
top_p: float = 1.0, |
|
top_k: int = 50, |
|
): |
|
print(f'message: {message}') |
|
print(f'history: {history}') |
|
|
|
|
|
chat_history = [] |
|
for prompt, answer in history: |
|
chat_history.append((prompt, answer)) |
|
|
|
|
|
for response, _ in model.stream_chat( |
|
tokenizer, |
|
message, |
|
chat_history, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
): |
|
yield response |
|
|
|
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) |
|
|
|
with gr.Blocks(css=CSS, theme="soft") as demo: |
|
gr.HTML(TITLE) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a helpful assistant capable of generating long-form content.", |
|
label="System Prompt", |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.5, |
|
label="Temperature", |
|
), |
|
gr.Slider( |
|
minimum=1024, |
|
maximum=32768, |
|
step=1024, |
|
value=32768, |
|
label="Max new tokens", |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
label="Top p", |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label="Top k", |
|
), |
|
], |
|
examples=[ |
|
["Write a 10000-word comprehensive guide on artificial intelligence and its applications."], |
|
["Create a detailed 5000-word business plan for a space tourism company."], |
|
["Compose a 3000-word short story about time travel and its consequences."], |
|
["Develop a 7000-word research proposal on the potential of quantum computing in cryptography."], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|