Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| from threading import Thread | |
| MODEL = "THUDM/LongWriter-glm4-9b" | |
| TITLE = "<h1><center>LongWriter-glm4-9b</center></h1>" | |
| PLACEHOLDER = """ | |
| <center> | |
| <p>Hi! I'm LongWriter-glm4-9b, capable of generating 10,000+ words. How can I assist you today?</p> | |
| </center> | |
| """ | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| """ | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") | |
| model = model.eval() | |
| def stream_chat( | |
| message: str, | |
| history: list, | |
| system_prompt: str, | |
| temperature: float = 0.5, | |
| max_new_tokens: int = 32768, | |
| top_p: float = 1.0, | |
| top_k: int = 50, | |
| ): | |
| print(f'message: {message}') | |
| print(f'history: {history}') | |
| # Prepare the conversation history | |
| chat_history = [] | |
| for prompt, answer in history: | |
| chat_history.append((prompt, answer)) | |
| # Generate the response | |
| for response, _ in model.stream_chat( | |
| tokenizer, | |
| message, | |
| chat_history, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| ): | |
| yield response | |
| chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
| with gr.Blocks(css=CSS, theme="soft") as demo: | |
| gr.HTML(TITLE) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a helpful assistant capable of generating long-form content.", | |
| label="System Prompt", | |
| ), | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.5, | |
| label="Temperature", | |
| ), | |
| gr.Slider( | |
| minimum=1024, | |
| maximum=32768, | |
| step=1024, | |
| value=32768, | |
| label="Max new tokens", | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="Top p", | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| label="Top k", | |
| ), | |
| ], | |
| examples=[ | |
| ["Write a 10000-word comprehensive guide on artificial intelligence and its applications."], | |
| ["Create a detailed 5000-word business plan for a space tourism company."], | |
| ["Compose a 3000-word short story about time travel and its consequences."], | |
| ["Develop a 7000-word research proposal on the potential of quantum computing in cryptography."], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |