art-manuh commited on
Commit
06969bb
·
verified ·
1 Parent(s): f99a5d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -59
app.py CHANGED
@@ -1,63 +1,90 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
 
 
 
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from datasets import load_dataset
2
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
3
  import gradio as gr
4
+ from transformers import pipeline
5
+ import logging
6
+
7
+ # Enable detailed logging
8
+ logging.basicConfig(level=logging.INFO)
9
+
10
+ # Load dataset
11
+ dataset = load_dataset("mwitiderrick/swahili")
12
+
13
+ # Print dataset columns for verification
14
+ print(f"Dataset columns: {dataset['train'].column_names}")
15
+
16
+ # Initialize the tokenizer and model
17
+ model_name = "gpt2" # Use GPT-2 for text generation
18
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
19
+ model = GPT2LMHeadModel.from_pretrained(model_name)
20
+
21
+ # Add a padding token to the tokenizer
22
+ tokenizer.pad_token = tokenizer.eos_token # Use eos_token as pad_token
23
+ tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
24
+
25
+ # Preprocess the dataset
26
+ def preprocess_function(examples):
27
+ # Tokenize and format the dataset
28
+ encodings = tokenizer(
29
+ examples['text'], # Use 'text' column from your dataset
30
+ truncation=True,
31
+ padding='max_length', # Ensure consistent length
32
+ max_length=512
33
+ )
34
+ encodings['labels'] = encodings['input_ids'] # Use input_ids directly as labels
35
+ return encodings
36
+
37
+ # Tokenize the dataset
38
+ try:
39
+ tokenized_datasets = dataset.map(
40
+ preprocess_function,
41
+ batched=True
42
+ )
43
+ except Exception as e:
44
+ print(f"Error during tokenization: {e}")
45
+
46
+ # Define training arguments
47
+ training_args = TrainingArguments(
48
+ output_dir='./results',
49
+ per_device_train_batch_size=4,
50
+ num_train_epochs=1,
51
+ logging_dir='./logs',
52
+ logging_steps=500, # Log every 500 steps
53
+ evaluation_strategy="steps", # Use evaluation strategy
54
+ save_steps=10_000, # Save checkpoint every 10,000 steps
55
+ save_total_limit=2, # Keep only the last 2 checkpoints
56
+ )
57
+
58
+ # Define Trainer
59
+ trainer = Trainer(
60
+ model=model,
61
+ args=training_args,
62
+ train_dataset=tokenized_datasets["train"],
63
+ tokenizer=tokenizer,
64
  )
65
 
66
+ # Start training
67
+ try:
68
+ trainer.train()
69
+ except Exception as e:
70
+ print(f"Error during training: {e}")
71
+
72
+ # Define the Gradio interface function
73
+ nlp = pipeline("text-generation", model=model, tokenizer=tokenizer)
74
+
75
+ def generate_text(prompt):
76
+ try:
77
+ return nlp(prompt, max_length=50)[0]['generated_text']
78
+ except Exception as e:
79
+ return f"Error during text generation: {e}"
80
+
81
+ # Create and launch the Gradio interface
82
+ iface = gr.Interface(
83
+ fn=generate_text,
84
+ inputs="text",
85
+ outputs="text",
86
+ title="Swahili Language Model",
87
+ description="Generate text in Swahili using a pre-trained language model."
88
+ )
89
 
90
+ iface.launch()