Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
# Function to send audio to Groq API and get transcription | |
def transcribe(audio_path): | |
# Read audio file in binary mode | |
with open(audio_path, "rb") as audio_file: | |
audio_data = audio_file.read() | |
# Groq API endpoint for audio transcription | |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" | |
# Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key | |
headers = { | |
"Authorization": "Bearer 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", | |
} | |
# Prepare the files and data for the request | |
files = { | |
'file': ('audio.wav', audio_data, 'audio/wav'), | |
} | |
data = { | |
'model': 'whisper-large-v3-turbo', # Specify the model to use | |
'response_format': 'json', # Desired response format | |
'language': 'en', # Language of the audio | |
} | |
# Send audio to Groq API | |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) | |
# Parse response | |
if response.status_code == 200: | |
result = response.json() | |
return result.get("text", "No transcription available.") | |
else: | |
return f"Error: {response.status_code}, {response.text}" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath"), # Removed 'source' parameter for compatibility | |
outputs="text", | |
title="Voice to Text Converter", | |
description="Record your voice, and it will be transcribed into text using Groq API." | |
) | |
iface.launch() | |