arpm01's picture
add examples
83ead12
raw
history blame
1.04 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# tokenizer = AutoTokenizer.from_pretrained("human-centered-summarization/financial-summarization-pegasus")
# model = AutoModelForSeq2SeqLM.from_pretrained("human-centered-summarization/financial-summarization-pegasus")
# pipe = pipeline(task="summarization",
# model=model,
# tokenizer=tokenizer,)
pipe = pipeline(task="text2text-generation", model = "human-centered-summarization/financial-summarization-pegasus")
with open('text1.txt') as f:
text1 = f.read()
with open('text2.txt') as f:
text2 = f.read()
with open('text3.txt') as f:
text3 = f.read()
gr.Interface.from_pipeline(pipe,
title="Financial Summarization",
description="Financial Summarization using Pegasus. Model can be found at https://huggingface.co/human-centered-summarization/financial-summarization-pegasus",
examples=[text1,text2]
).launch()