Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_path = "yourusername/product-review-sentiment-analyzer"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
9 |
+
|
10 |
+
# Define sentiment labels
|
11 |
+
labels = ["Negative", "Positive", "Neutral"]
|
12 |
+
|
13 |
+
# Define prediction function
|
14 |
+
def predict(text):
|
15 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
20 |
+
prediction = torch.argmax(probabilities, dim=-1).item()
|
21 |
+
|
22 |
+
return {labels[i]: float(probabilities[0][i]) for i in range(len(labels))}
|
23 |
+
|
24 |
+
# Create Gradio interface
|
25 |
+
demo = gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs=gr.Textbox(placeholder="Enter a product review..."),
|
28 |
+
outputs=gr.Label(num_top_classes=3),
|
29 |
+
title="Product Review Sentiment Analyzer",
|
30 |
+
description="Analyze the sentiment of product reviews as Positive, Negative, or Neutral."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch app
|
34 |
+
demo.launch()
|