import streamlit as st from langchain.llms import HuggingFaceHub def load_answers(question): llm = HuggingFaceHub(repo_id="google/flan-t5-large") answer = llm(question, options={"use_gpu": False, "use_cache": False}, parameters={"return_full_text": False, "num_return_sequences": 1, "temperature": 1.0, "top_p": 0.9, "max_new_tokens": 250}) return answer st.set_page_config(page_title="LangChain LLM LAB", page_icon="🔗") st.header("LangChain LLM LAB") def get_text(): input_text = st.text_input("Enter your question here...",key="question") return input_text user_input = get_text() response = load_answers(user_input) submit = st.button("Generate Answer") if submit: st.subheader("Answer:") st.write(response)