File size: 10,394 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.models import ControlNetModel
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.controlnet import zero_module

from fourm.utils import to_2tuple
from .lm_models import create_model


class ControlNetAdapterEmbedding(nn.Module):

    def __init__(
        self,
        conditioning_embedding_channels,
        adapter,
        conditioning_channels=3,
    ):
        super().__init__()

        self.adapter_model = create_model(
            in_channels=conditioning_channels,
            output_type="stats",
        )
        self._load_adapter(adapter)

        self.conv_out = zero_module(
            nn.Conv2d(8, conditioning_embedding_channels, kernel_size=3, padding=1)
        )

    def forward(self, conditioning):
        embedding = self.adapter_model(quant=conditioning)

        embedding = self.conv_out(embedding)

        return embedding

    def _load_adapter(self, path):
        ckpt = torch.load(path)['model']
        for key in list(ckpt.keys()):
            if 'vq_model' in key or 'vae' in key:
                del ckpt[key]
        self.adapter_model.load_state_dict(ckpt)
        print("Loaded the adapter model")


class ControlNetConditioningEmbedding(nn.Module):

    def __init__(
        self,
        conditioning_embedding_channels,
        conditioning_channels = 3,
        block_out_channels = (16, 32, 96, 256),
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1))

        self.conv_out = zero_module(
            nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding

    
class ControlnetCond(ModelMixin, ConfigMixin):
    def __init__(self, 
        in_channels, 
        cond_channels, 
        sd_pipeline, 
        image_size, 
        freeze_params=True,
        block_out_channels = (320, 640, 1280, 1280),
        conditioning_embedding_out_channels = (32, 32, 96, 256),
        pretrained_cn=False,
        enable_xformer=False,
        adapter=None,
        *args, 
        **kwargs
    ):
        super().__init__()
        self.in_channels = in_channels
        self.cond_channels = cond_channels

        self.sd_pipeline = sd_pipeline
        self.unet = sd_pipeline.unet
        self.text_encoder = sd_pipeline.text_encoder
        self.tokenizer = sd_pipeline.tokenizer

        if pretrained_cn:
            self.controlnet = ControlNetModel.from_unet(self.unet, conditioning_embedding_out_channels=conditioning_embedding_out_channels)
            self.controlnet.conditioning_channels = cond_channels
            self.controlnet.config.conditioning_channels = cond_channels
        else:
            self.controlnet = ControlNetModel(
                    in_channels=in_channels,
                    conditioning_channels=cond_channels,
                    block_out_channels=block_out_channels,
                    conditioning_embedding_out_channels=conditioning_embedding_out_channels,
                    *args,
                    **kwargs,
                )

        self.use_adapter = adapter is not None
        if adapter is not None:
            self.controlnet.controlnet_cond_embedding = ControlNetAdapterEmbedding(
                conditioning_embedding_channels=self.controlnet.config.block_out_channels[0],
                adapter=adapter,
                conditioning_channels=cond_channels,
            )
        else:
            self.controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding(
                conditioning_embedding_channels=self.controlnet.config.block_out_channels[0],
                block_out_channels=self.controlnet.config.conditioning_embedding_out_channels,
                conditioning_channels=cond_channels,
            )

        if enable_xformer:
            print('xFormer enabled')
            self.unet.enable_xformers_memory_efficient_attention()
            self.controlnet.enable_xformers_memory_efficient_attention()
        
        self.empty_str_encoding = nn.Parameter(self._encode_prompt(""), requires_grad=False)
        if freeze_params:
            self.freeze_params()

        self.sample_size = image_size // sd_pipeline.vae_scale_factor
        self.H, self.W = to_2tuple(self.sample_size)

    def forward(self,
                sample: torch.FloatTensor, # Shape (B, C, H, W),
                timestep: Union[torch.Tensor, float, int],
                encoder_hidden_states: torch.Tensor = None, # Shape (B, D_C, H_C, W_C)
                cond_mask: Optional[torch.BoolTensor] = None, # Boolen tensor of shape (B, H_C, W_C). True for masked out pixels,
                prompt = None,
                unconditional = False,
                cond_scale = 1.0,
                **kwargs):

        # Optionally mask out conditioning
        if cond_mask is not None:
            encoder_hidden_states = torch.where(cond_mask[:,None,:,:], 0.0, encoder_hidden_states)

        if not self.use_adapter:
            controlnet_cond = F.interpolate(encoder_hidden_states, (self.H, self.W), mode="nearest")
        else:
            controlnet_cond = F.interpolate(encoder_hidden_states, (self.H // 2, self.W // 2), mode="nearest")
        
        # encoder_hidden_states is the propmp embedding in the controlnet model, for now it's set to zeros.
        if prompt is None or unconditional:
            encoder_hidden_states = torch.cat([self.empty_str_encoding] * sample.shape[0])
        else:
            encoder_hidden_states = self._encode_prompt(prompt)

        down_block_res_samples, mid_block_res_sample = self.controlnet(
                sample,
                timestep,
                encoder_hidden_states=encoder_hidden_states,
                controlnet_cond=controlnet_cond,
                conditioning_scale=cond_scale,
                return_dict=False,
            )

        # TODO not the most efficient way
        if unconditional:
            down_block_res_samples = [torch.zeros_like(s) for s in down_block_res_samples]
            controlnet_cond = torch.zeros_like(controlnet_cond)
        
        noise_pred = self.unet(
                sample,
                timestep,
                encoder_hidden_states=encoder_hidden_states,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
                return_dict=False,
            )[0]

        return noise_pred
    
    def freeze_params(self):
        for param in self.unet.parameters():
            param.requires_grad = False
        for param in self.text_encoder.parameters():
            param.requires_grad = False
    
    def unfreeze_params(self):
        for param in self.unet.parameters():
            param.requires_grad = True
        for param in self.text_encoder.parameters():
            param.requires_grad = True

    @torch.no_grad()
    def _encode_prompt(self, prompt):

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = text_inputs.attention_mask.to(self.device)
        else:
            attention_mask = None

        prompt_embeds = self.text_encoder(
            text_input_ids.to(self.device),
            attention_mask=attention_mask,
        )[0]

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=self.device)

        return prompt_embeds


def controlnet(*args, **kwargs):
    return ControlnetCond(
            flip_sin_to_cos=True,
            freq_shift=0,
            down_block_types=
             ['CrossAttnDownBlock2D',
              'CrossAttnDownBlock2D',
              'CrossAttnDownBlock2D',
              'DownBlock2D'],
            only_cross_attention=False,
            block_out_channels=[320, 640, 1280, 1280],
            layers_per_block=2,
            downsample_padding=1,
            mid_block_scale_factor=1,
            act_fn='silu',
            norm_num_groups=32,
            norm_eps=1e-05,
            cross_attention_dim=768,
            attention_head_dim=8,
            num_attention_heads=None,
            use_linear_projection=False,
            class_embed_type=None,
            num_class_embeds=None,
            upcast_attention=False,
            resnet_time_scale_shift='default',
            projection_class_embeddings_input_dim=None,
            controlnet_conditioning_channel_order='rgb',
            conditioning_embedding_out_channels=[kwargs['cond_channels'], 32, 96, 256],
            global_pool_conditions=False,
            freeze_params=True,
            *args,
            **kwargs,
        )